Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities

被引:117
作者
Aizicovici, S [1 ]
McKibben, M
Reich, S
机构
[1] Ohio Univ, Dept Math, Athens, OH 45701 USA
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
anti-periodic solution; evolution equation; maximal monotone operator; discontinuous nonlinearity;
D O I
10.1016/S0362-546X(99)00192-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The generalized solutions for locally bounded, continuous, nonlinear equations were analyzed. The anti-periodic problems for nonlinear partial differential equations were analyzed by applying the sum of a nonmonotone operator and a superposition operator. First and second order integral equations were analyzed for nonlinearities by applying various boundary value conditions.
引用
收藏
页码:233 / 251
页数:19
相关论文
共 25 条
[1]  
Adams R. A., 1995, SOBOLEV SPACES
[2]  
AIZICOVICI S, 1985, CR ACAD SCI I-MATH, V301, P829
[3]  
Aizicovici S, 1999, DISCRET CONTIN DYN S, V5, P35
[4]   ANTIPERIODIC SOLUTIONS TO A CLASS OF NONLINEAR DIFFERENTIAL-EQUATIONS IN HILBERT-SPACE [J].
AIZICOVICI, S ;
PAVEL, NH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 99 (02) :387-408
[5]  
Aizicovici S., 1992, DYNAM SYSTEMS APPL, V1, P121
[6]  
AIZICOVICI S, 1980, AN ST U AL I CUZA LA, V26, P353
[7]  
AUBIN JP, 1963, CR HEBD ACAD SCI, V256, P5042
[8]   EXACT SOLUTION AND INTERFACIAL-TENSION OF THE 6-VERTEX MODEL WITH ANTIPERIODIC BOUNDARY-CONDITIONS [J].
BATCHELOR, MT ;
BAXTER, RJ ;
OROURKE, MJ ;
YUNG, CM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (10) :2759-2770
[9]   THE ONSET AND END OF THE GUNN-EFFECT IN EXTRINSIC SEMICONDUCTORS [J].
BONILLA, LL ;
HIGUERA, FJ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (06) :1625-1649
[10]  
BREZIS H, 1971, CONTRIBUTIONS NONLIN, P101