Smad3 mediates TGF-β1 induction of VEGF production in lung fibroblasts

被引:64
作者
Kobayashi, T
Liu, XD
Wen, FQ
Fang, QH
Abe, S
Wang, XQ
Hashimoto, M
Shen, L
Kawasaki, S
Kim, HJ
Kohyama, T
Rennard, SI
机构
[1] Univ Nebraska, Med Ctr, Omaha, NE 68182 USA
[2] Sichuan Univ, W China Med Sch, W China Hosp, Dept Resp Med, Chengdu 610064, Sichuan, Peoples R China
[3] Tsing Hua Univ, Hosp 1, Pulm & Crit Care Dept, Beijing 100084, Peoples R China
[4] Nippon Med Coll, Dept Internal Med 4, Tokyo 113, Japan
[5] Nagoya Univ, Nagoya, Aichi, Japan
[6] Seoul Adventist Hosp, Dept Internal Med, Seoul, South Korea
[7] WonKwang Univ, Sanbon Med Ctr, Seoul, South Korea
[8] Univ Tokyo, Dept Resp Med, Tokyo, Japan
关键词
small interference RNA; Smad2; Smad3; transforming growth factor-beta 1; vascular endothelial growth factor;
D O I
10.1016/j.bbrc.2004.12.032
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transforining growth factor-beta1 (TGF-beta1) is a key factor in a variety of physiological and pathological processes. Vascular endothelial growth factor (VEGF) is a key angiogenic factor. and vascular change is one of the features of airway remodeling. We examined the effect of TGF-beta1 on VEGF production by fibroblasts from mice lacking expression of Smad2 or Smad3 as well as human lung fibroblasts treated with or without Smad2 or Smad3 siRNA. TGF-beta1 stimulated VEGF production by fibroblasts from Smad2 deficient annuals and wildtype animals. In contrast, TGF-beta1 did not affect VEGF production by fibroblasts from Samd3 deficient mice. Similarly, TGF-beta1 failed to stimulate VEGF production by HFL-1 cells treated with Samd3 siRNA but significantly increased VEGF production by the cells treated with Smad2 siRNA. These result suggest that TGF-beta1 stimulation of VEGF production by fibroblasts is regulated by Smad3 but not by Smad2 signaling. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:393 / 398
页数:6
相关论文
共 21 条
[1]   Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response [J].
Ashcroft, GS ;
Yang, X ;
Glick, AB ;
Weinstein, M ;
Letterio, JJ ;
Mizel, DE ;
Anzano, M ;
Greenwell-Wild, T ;
Wahl, SM ;
Deng, CX ;
Roberts, AB .
NATURE CELL BIOLOGY, 1999, 1 (05) :260-266
[2]   Mechanisms of disease:: Role of transforming growth factor β in human disease. [J].
Blobe, GC ;
Schiemann, WP ;
Lodish, HF .
NEW ENGLAND JOURNAL OF MEDICINE, 2000, 342 (18) :1350-1358
[3]  
Datto MB, 1999, MOL CELL BIOL, V19, P2495
[4]   Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J].
Elbashir, SM ;
Harborth, J ;
Lendeckel, W ;
Yalcin, A ;
Weber, K ;
Tuschl, T .
NATURE, 2001, 411 (6836) :494-498
[5]   The biology of vascular endothelial growth factor [J].
Ferrara, N ;
DavisSmyth, T .
ENDOCRINE REVIEWS, 1997, 18 (01) :4-25
[6]   Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J].
Fire, A ;
Xu, SQ ;
Montgomery, MK ;
Kostas, SA ;
Driver, SE ;
Mello, CC .
NATURE, 1998, 391 (6669) :806-811
[7]  
Grotendorst Gary R., 1997, Cytokine and Growth Factor Reviews, V8, P171, DOI 10.1016/S1359-6101(97)00010-5
[8]   Postgastrulation Smad2-deficient embryos show defects in embryo turning and anterior morphogenesis [J].
Heyer, J ;
Escalante-Alcalde, D ;
Lia, M ;
Boettinger, E ;
Edelmann, W ;
Stewart, CL ;
Kucherlapati, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (22) :12595-12600
[9]   Expression of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin immunoreactivity in asthmatic airways and its relationship to angiogenesis [J].
Hoshino, M ;
Takahashi, M ;
Aoike, N .
JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2001, 107 (02) :295-301
[10]   The TGFβ receptor activation process:: An inhibitor- to substrate-binding switch [J].
Huse, M ;
Muir, TW ;
Xu, L ;
Chen, YG ;
Kuriyan, J ;
Massagué, J .
MOLECULAR CELL, 2001, 8 (03) :671-682