Thermal Conductivity of Natural Rubber Using Molecular Dynamics Simulation

被引:9
作者
He, Yan [1 ]
Ma, Lian-Xiang [1 ]
Tang, Yuan-Zheng [1 ]
Wang, Ze-Peng [1 ]
Li, Wei [2 ]
Kukulka, David [3 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Electromech Engn, Qingdao 266061, Peoples R China
[2] Zhejiang Univ, Dept Energy Engn, Hangzhou 310027, Peoples R China
[3] SUNY Coll Buffalo, Dept Mech Engn Technol, Buffalo, NY 14222 USA
基金
中国国家自然科学基金;
关键词
Thermal Conductivity; Molecular Dynamics; Natural Rubber; CARBON NANOTUBE; HYDROCARBONS; POLYMERS;
D O I
10.1166/jnn.2015.9640
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thermal conductivity of natural rubber has been studied by classic molecular dynamics simulations. These simulations are performed on natural rubber models using the adaptive intermolecular reactive empirical bond order (AIREBO) and the Green-Kubo molecular dynamics (MD) simulations. Thermal conductivity results are found to be very sensitive to the time step used in the simulations. For a time step of 0.1 fs, the converged thermal conductivity is 0.35 W/mK. Additionally the anisotropic thermal conductivity of a specially-modeled natural rubber model with straight molecular chains was studied and values of thermal conductivity parallel to the molecular chains was found to be 1.71 W/mK and the anisotropy, 2 kappa(z)/(kappa(x) + kappa(y)), was 2.67.
引用
收藏
页码:3244 / 3248
页数:5
相关论文
共 25 条
[1]   MOLECULAR DYNAMICS CALCULATIONS OF THE THERMAL CONDUCTIVITY OF MOLECULAR LIQUIDS, POLYMERS, AND CARBON NANOTUBES [J].
Algaer, Elena A. ;
Mueller-Plathe, Florian .
SOFT MATERIALS, 2012, 10 (1-3) :42-80
[2]   Thermal Conductivity of Amorphous Polystyrene in Supercritical Carbon Dioxide Studied by Reverse Nonequilibrium Molecular Dynamics Simulations [J].
Algaer, Elena A. ;
Alaghemandi, Mohammad ;
Boehm, Michael C. ;
Mueller-Plathe, Florian .
JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 113 (43) :11487-11494
[3]   THERMAL CONDUCTIVITY OF POLYMERS [J].
ANDERSON, DR .
CHEMICAL REVIEWS, 1966, 66 (06) :677-&
[4]   A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons [J].
Brenner, DW ;
Shenderova, OA ;
Harrison, JA ;
Stuart, SJ ;
Ni, B ;
Sinnott, SB .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (04) :783-802
[5]   A STUDY OF VARIATION OF THERMAL-CONDUCTIVITY OF ELASTOMERS WITH TEMPERATURE [J].
DASHORA, P .
PHYSICA SCRIPTA, 1994, 49 (05) :611-614
[6]   THE THERMAL CONDUCTIVITY OF ELASTOMERS UNDER STRETCH AND AT LOW TEMPERATURES [J].
DAUPHINEE, TM ;
IVEY, DG ;
SMITH, HD .
CANADIAN JOURNAL OF RESEARCH SECTION A-PHYSICAL SCIENCES, 1950, 28 (06) :596-615
[7]   Prediction of Transport Properties by Molecular Simulation: Methanol and Ethanol and Their Mixture [J].
Guevara-Carrion, Gabriela ;
Nieto-Draghi, Carlos ;
Vrabec, Jadran ;
Hasse, Hans .
JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (51) :16664-16674
[8]   Research of Thermal Conductivity and Tensile Strength of Carbon Black-Filled Nature Rubber [J].
He Yan ;
Yin Zhong ;
Ma Lian-xiang ;
Song Jun-Ping .
ADVANCED POLYMER PROCESSING, 2010, 87-88 :200-205
[9]   High Thermal Conductivity of Single Polyethylene Chains Using Molecular Dynamics Simulations [J].
Henry, Asegun ;
Chen, Gang .
PHYSICAL REVIEW LETTERS, 2008, 101 (23)
[10]   Thermal conductivity of metal-organic framework 5 (MOF-5): Part I. Molecular dynamics simulations [J].
Huang, B. L. ;
McGaughey, A. J. H. ;
Kaviany, M. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2007, 50 (3-4) :393-404