Is the detection of aquatic environmental DNA influenced by substrate type?

被引:63
作者
Buxton, Andrew S. [1 ]
Groombridge, Jim J. [1 ]
Griffiths, Richard A. [1 ]
机构
[1] Univ Kent, Sch Anthropol & Conservat, Durrell Inst Conservat & Ecol, Marlowe Bldg, Canterbury, Kent, England
关键词
ESTIMATING SITE OCCUPANCY; GREAT CRESTED NEWT; PCR-INHIBITION; ANCIENT DNA; EDNA; PERSISTENCE; AMPHIBIANS; SEDIMENTS; ACCOUNT; DESIGN;
D O I
10.1371/journal.pone.0183371
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The use of environmental DNA (eDNA) to assess the presence-absence of rare, cryptic or invasive species is hindered by a poor understanding of the factors that can remove DNA from the system. In aquatic systems, eDNA can be transported out either horizontally in water flows or vertically by incorporation into the sediment. Equally, eDNA may be broken down by various biotic and abiotic processes if the target organism leaves the system. We use occupancy modelling and a replicated mesocosm experiment to examine how detection probability of eDNA changes once the target species is no longer present. We hypothesise that detection probability falls faster with a sediment which has a large number of DNA binding sites such as topsoil or clay, over lower DNA binding capacity substrates such as sand. Water removed from ponds containing the target species (the great crested newt) initially showed high detection probabilities, but these fell to between 40% and 60% over the first 10 days and to between 10% and 22% by day 15: eDNA remained detectable at very low levels until day 22. Very little difference in detection was observed between the control group (no substrate) and the sand substrate. A small reduction in detection probability was observed between the control and clay substrates, but this was not significant. However, a highly significant reduction in detection probability was observed with a topsoil substrate. This result is likely to have stemmed from increased levels of PCR inhibition, suggesting that incorporation of DNA into the sentiment is of only limited importance. Surveys of aquatic species using eDNA clearly need to take account of substrate type as well as other environmental factors when collecting samples, analysing data and interpreting the results.
引用
收藏
页数:14
相关论文
共 55 条
[1]  
Abu Al-Soud W, 2000, J CLIN MICROBIOL, V38, P345
[2]   Forensic implications of PCR inhibition-A review [J].
Alaeddini, Reza .
FORENSIC SCIENCE INTERNATIONAL-GENETICS, 2012, 6 (03) :297-305
[3]   Inhibition of DNA Polymerases Used in Q-PCR by Structurally Different Soil-Derived Humic Substances [J].
Albers, Christian Nyrop ;
Jensen, Anders ;
Baelum, Jacob ;
Jacobsen, Carsten Suhr .
GEOMICROBIOLOGY JOURNAL, 2013, 30 (08) :675-681
[4]   Ancient DNA from lake sediments: Bridging the gap between paleoecology and genetics [J].
Anderson-Carpenter, Lynn L. ;
McLachlan, Jason S. ;
Jackson, Stephen T. ;
Kuch, Melanie ;
Lumibao, Candice Y. ;
Poinar, Hendrik N. .
BMC EVOLUTIONARY BIOLOGY, 2011, 11
[5]  
[Anonymous], 2013, INT J ZOOL, DOI DOI 10.1155/2013/174056
[6]  
AZ Instruments, 2014, OPP MAN PEN TYP PH M
[7]   Environmental Conditions Influence eDNA Persistence in Aquatic Systems [J].
Barnes, Matthew A. ;
Turner, Cameron R. ;
Jerde, Christopher L. ;
Renshaw, Mark A. ;
Chadderton, W. Lindsay ;
Lodge, David M. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (03) :1819-1827
[8]  
Biggs J., 2014, ANAL METHODOLOGICAL
[9]   Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus) [J].
Biggs, Jeremy ;
Ewald, Naomi ;
Valentini, Alice ;
Gaboriaud, Coline ;
Dejean, Tony ;
Griffiths, Richard A. ;
Foster, Jim ;
Wilkinson, John W. ;
Arnell, Andy ;
Brotherton, Peter ;
Williams, Penny ;
Dunn, Francesca .
BIOLOGICAL CONSERVATION, 2015, 183 :19-28
[10]  
BURNHAM K.P., 2002, MODEL SELECTION MULT, P352