3D GABA imaging with real-time motion correction, shim update and reacquisition of adiabatic spiral MRSI

被引:91
作者
Bogner, Wolfgang [1 ,2 ]
Gagoski, Borjan [3 ]
Hess, Aaron T. [4 ]
Bhat, Himanshu [5 ]
Tisdall, M. Dylan [1 ]
van der Kouwe, Andre J. W. [1 ]
Strasser, Bernhard [2 ]
Marjanska, Malgorzata [6 ,7 ]
Trattnig, Siegfried [2 ]
Grant, Ellen [3 ]
Rosen, Bruce [1 ]
Andronesi, Ovidiu C. [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Radiol, Athinoula A Martinos Ctr Biomed Imaging,Massachus, Boston, MA 02115 USA
[2] Med Univ Vienna, Dept Biomed Imaging & Image Guided Therapy, MRCE, Vienna, Austria
[3] Harvard Univ, Sch Med, Boston Childrens Hosp, Fetal Neonatal Neuroimaging & Dev Sci Ctr, Boston, MA 02115 USA
[4] Univ Oxford, John Radcliffe Hosp, Ctr Clin Magnet Resonance Res, Dept Cardiovasc Med, Oxford OX3 9DU, England
[5] Siemens Healthcare, Charlestown, MA USA
[6] Univ Minnesota, Ctr Magnet Resonance Res, Minneapolis, MN USA
[7] Univ Minnesota, Dept Radiol, Minneapolis, MN 55455 USA
基金
奥地利科学基金会; 美国国家卫生研究院;
关键词
Neurotransmitter; GABA; Glutamate; MEGA editing; Magnetic resonance spectroscopy; LASER; Prospective motion correction; Real-time correction; Spiral imaging; Frequency drift correction; Reacquisition; GAMMA-AMINOBUTYRIC-ACID; MAGNETIC-RESONANCE-SPECTROSCOPY; HUMAN BRAIN-METABOLITES; PROTON T-2 RELAXATION; HUMAN CEREBRAL GABA; IN-VIVO DETECTION; SPECTRAL QUALITY; FREQUENCY; PULSES; NEUROTRANSMITTERS;
D O I
10.1016/j.neuroimage.2014.09.032
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Gamma-aminobutyric acid (GABA) and glutamate (Glu) are the major neurotransmitters in the brain. They are crucial for the functioning of healthy brain and their alteration is a major mechanism in the pathophysiology of many neuro-psychiatric disorders. Magnetic resonance spectroscopy (MRS) is the only way to measure GABA and Glu non-invasively in vivo. GABA detection is particularly challenging and requires special MRS techniques. The most popular is MEscher-GArwood (MEGA) difference editing with single-voxel Point RESolved Spectroscopy (PRESS) localization. This technique has three major limitations: a) MEGA editing is a subtraction technique, hence is very sensitive to scanner instabilities and motion artifacts. b) PRESS is prone to localization errors at high fields (>= 3 T) that compromise accurate quantification. c) Single-voxel spectroscopy can (similar to a biopsy) only probe steady GABA and Glu levels in a single location at a time. To mitigate these problems, we implemented a 3D MEGA-editing MRS imaging sequence with the following three features: a) Real-time motion correction, dynamic shim updates, and selective reacquisition to eliminate subtraction artifacts due to scanner instabilities and subject motion. b) Localization by Adiabatic SElective Refocusing (LASER) to improve the localization accuracy and signal-to-noise ratio. c) K-space encoding via a weighted stack of spirals provides 3D metabolic mapping with flexible scan times. Simulations, phantom and in vivo experiments prove that our MEGA-LASER sequence enables 3D mapping of GABA+ and Glx (Glutamate + Gluatmine), by providing 1.66 times larger signal for the 3.02 ppm multiplet of GABA+ compared to MEGA-PRESS, leading to clinically feasible scan times for 3D brain imaging. Hence, our sequence allows accurate and robust 3D-mapping of brain GABA+ and Glx levels to be performed at clinical 3 T MR scanners for use in neuroscience and clinical applications. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:290 / 302
页数:13
相关论文
共 68 条
[1]   Volumetric spectroscopic imaging with spiral-based k-space trajectories [J].
Adalsteinsson, E ;
Irarrazabal, P ;
Topp, S ;
Meyer, C ;
Macovski, A ;
Spielman, DM .
MAGNETIC RESONANCE IN MEDICINE, 1998, 39 (06) :889-898
[2]   Proton MR Spectroscopy-Detectable Major Neurotransmitters of the Brain: Biology and Possible Clinical Applications [J].
Agarwal, N. ;
Renshaw, P. F. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2012, 33 (04) :595-602
[3]   Neurologic 3D MR Spectroscopic Imaging with Low-Power Adiabatic Pulses and Fast Spiral Acquisition [J].
Andronesi, Ovidiu C. ;
Gagoski, Borjan A. ;
Sorensen, A. Gregory .
RADIOLOGY, 2012, 262 (02) :647-661
[4]   Detection of 2-Hydroxyglutarate in IDH-Mutated Glioma Patients by In Vivo Spectral-Editing and 2D Correlation Magnetic Resonance Spectroscopy [J].
Andronesi, Ovidiu C. ;
Kim, Grace S. ;
Gerstner, Elizabeth ;
Batchelor, Tracy ;
Tzika, Aria A. ;
Fantin, Valeria R. ;
Vander Heiden, Matthew G. ;
Sorensen, A. Gregory .
SCIENCE TRANSLATIONAL MEDICINE, 2012, 4 (116)
[5]   Correlation chemical shift imaging with low-power adiabatic pulses and constant-density spiral trajectories [J].
Andronesi, Ovidiu C. ;
Gagoski, Borjan A. ;
Adalsteinsson, Elfar ;
Sorensen, A. Gregory .
NMR IN BIOMEDICINE, 2012, 25 (02) :195-209
[6]   Low-Power Adiabatic Sequences for In Vivo Localized Two-Dimensional Chemical Shift Correlated MR Spectroscopy [J].
Andronesi, Ovidiu C. ;
Ramadan, Saadallah ;
Mountford, Carolyn E. ;
Sorensen, A. Gregory .
MAGNETIC RESONANCE IN MEDICINE, 2010, 64 (06) :1542-1556
[7]   Spectroscopic imaging with improved gradient modulated constant adiabaticity pulses on high-field clinical scanners [J].
Andronesi, Ovidiu C. ;
Ramadan, Saadallah ;
Ratai, Eva-Maria ;
Jennings, Dominique ;
Mountford, Carolyn E. ;
Sorensen, A. Gregory .
JOURNAL OF MAGNETIC RESONANCE, 2010, 203 (02) :283-293
[8]   Using proton magnetic resonance imaging and spectroscopy to understand brain "activation" [J].
Baslow, Morris H. ;
Guilfoyle, David N. .
BRAIN AND LANGUAGE, 2007, 102 (02) :153-164
[9]   Comparison of manual and automatic section positioning of brain MR images [J].
Benner, T ;
Wisco, JJ ;
van der Kouwe, AJW ;
Fischl, B ;
Vangel, MG ;
Hochberg, FH ;
Sorensen, AG .
RADIOLOGY, 2006, 239 (01) :246-254
[10]   Spectral quality control in motion-corrupted single-voxel J-difference editing scans: An interleaved navigator approach [J].
Bhattacharyya, P. K. ;
Lowe, M. J. ;
Phillips, M. D. .
MAGNETIC RESONANCE IN MEDICINE, 2007, 58 (04) :808-812