Phenotype discovery by gene expression profiling: Mapping of biological processes linked to BMP-2-mediated osteoblast differentiation

被引:138
作者
Balint, E
Lapointe, D
Drissi, H
van der Meijden, C
Young, DW
van Wijnen, AJ
Stein, JL
Stein, GS
Lian, JB
机构
[1] Univ Massachusetts, Sch Med, Dept Cell Biol, Worcester, MA 01655 USA
[2] Univ Massachusetts, Sch Med, Ctr Canc, Worcester, MA 01655 USA
[3] Univ Massachusetts, Sch Med, Informat Serv, Worcester, MA 01655 USA
关键词
C2C12; cells; neuronal differentiation; BMP-2; osteogenesis; small leucine rich proteins; signal transduction; transcription factors; genetic circuits;
D O I
10.1002/jcb.10515
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Understanding physiological control of osteoblast differentiation necessitates characterization of the regulatory signals that initiate the events directing a cell to lineage commitment and establishing competency for bone formation. The bone morphogenetic protein, BMP-2, a member of the TGFbeta superfamily, induces osteoblast differentiation and functions through the Smad signal transduction pathway during in vivo bone formation. However, the molecular targets of BMP-mediated gene transcription during the process of osteoblast differentiation have not been comprehensively identified. In the present study, BMP-2 responsive factors involved in the early stages of commitment and differentiation to the osteoblast phenotype were analyzed by microarray gene expression profiling in samples ranging from 1 to 24 h following BMP-2 dependent differentiation of C2C12 premyoblasts into the osteogenic lineage. A total of 1,800 genes were responsive to BMP-2 and expression was modulated from 3-to 14-fold for less than 100 genes during the time course. Approximately 50% of these 100 genes are either up- or downregulated. Major events associated with phenotypic changes towards the osteogenic lineage were identified from hierarchical and functional clustering analyses. BMP-2 immediately responsive genes (1-4 h), which exhibited either transient or sustained expression, reflect activation and repression of non-osseous BMP-2 developmental systems. This initial response was followed by waves of expression of nuclear proteins and developmental regulatory factors including inhibitors of DNA binding, Runx2, C/EBP, Zn finger binding proteins, forkhead, and numerous homeobox proteins (e.g., CDP/cut, paired, distaless, Hox) which are expressed at characterized stages during osteoblast differentiation. A sequential profile of genes mediating changes in cell morphology, cell growth, and basement membrane formation is observed as a secondary transient early response (2-8 h). Commitment to the osteogenic phenotype is recognized by 8 h, reflected by downregulation of most myogenic-related genes and induction of a spectrum of signaling proteins and enzymes facilitating synthesis and assembly of an extracellular skeletal environment. These genes included collagens Type I and VI and the small leucine rich repeat family of proteoglycans (e.g., decorin, biglycan, osteomodulin, fibromodulin, and osteoadherin/osteoglycin) that reached peak expression at 24 h. With extracellular matrix development, the bone phenotype was further established from 16 to 24 h by induction of genes for cell adhesion and communication and enzymes that organize the bone ECM. Our microarray analysis resulted in the discovery of a class of genes, initially described in relation to differentiation of astrocytes and oligodendrocytes that are functionally coupled to signals for cellular extensions. They include nexin, neuropilin, latexin, neuroglian, neuron specific gene 1, and Ulip; suggesting novel roles for these genes in the bone microenvironment. This global analysis identified a multistage molecular and cellular cascade that supports BMP-2-mediated osteoblast differentiation.
引用
收藏
页码:401 / 426
页数:26
相关论文
共 123 条
  • [1] Mice deficient in small leucine-rich proteoglycans:: novel in vivo models for osteoporosis, osteoarthritis, Ehlers-Danlos syndrome, muscular dystrophy, and corneal diseases
    Ameye, L
    Young, MF
    [J]. GLYCOBIOLOGY, 2002, 12 (09) : 107R - 116R
  • [2] Area- and lamina-specific organization of a neuronal subpopulation defined by expression of latexin in the rat cerebral cortex
    Arimatsu, Y
    Kojima, M
    Ishida, M
    [J]. NEUROSCIENCE, 1999, 88 (01) : 93 - 105
  • [3] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [4] GAPIII A NEW BRAIN-ENRICHED MEMBER OF THE GTPASE-ACTIVATING PROTEIN FAMILY
    BABA, H
    FUSS, B
    URANO, J
    POULLET, P
    WATSON, JB
    TAMANOI, F
    MACKLIN, WB
    [J]. JOURNAL OF NEUROSCIENCE RESEARCH, 1995, 41 (06) : 846 - 858
  • [5] Bachner D, 1998, DEV DYNAM, V213, P398
  • [6] Bae SC, 2001, J BONE JOINT SURG AM, V83A, pS48
  • [7] Extracellular regulation of BMP signaling in vertebrates: A cocktail of modulators
    Balemans, W
    Van Hul, W
    [J]. DEVELOPMENTAL BIOLOGY, 2002, 250 (02) : 231 - 250
  • [8] Differential regulation of the two principal Runx2/Cbfa1 N-terminal isoforms in response to bone morphogenetic protein-2 during development of the osteoblast phenotype
    Banerjee, C
    Javed, A
    Choi, JY
    Green, J
    Rosen, V
    van Wijnen, AJ
    Stein, JL
    Lian, JB
    Stein, GS
    [J]. ENDOCRINOLOGY, 2001, 142 (09) : 4026 - 4039
  • [9] The effects of bone morphogenetic protein 2 and 4 (BMP2 and BMP4) on gap junctions during neurodevelopment
    Bani-Yaghoub, M
    Felker, JM
    Sans, C
    Naus, CCG
    [J]. EXPERIMENTAL NEUROLOGY, 2000, 162 (01) : 13 - 26
  • [10] Beck GR, 2001, CELL GROWTH DIFFER, V12, P61