Reconstruction of Compressed-sensing MR Imaging Using Deep Residual Learning in the Image Domain

被引:12
作者
Ouchi, Shohei [1 ]
Ito, Satoshi [1 ]
机构
[1] Utsunomiya Univ, Grad Sch Engn, Dept Innovat Syst Engn, Utsunomiya, Tochigi, Japan
关键词
compressed sensing; reconstruction; deep learning;
D O I
10.2463/mrms.mp.2019-0139
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: A deep residual learning convolutional neural network (DRL-CNN) was applied to improve image quality and speed up the reconstruction of compressed sensing magnetic resonance imaging. The reconstruction performances of the proposed method was compared with iterative reconstruction methods. Methods: The proposed method adopted a DRL-CNN to learn the residual component between the input and output images (i.e., aliasing artifacts) for image reconstruction. The CNN-based reconstruction was compared with iterative reconstruction methods. To clarify the reconstruction performance of the proposed method, reconstruction experiments using 1D-, 2D-random under-sampling and sampling patterns that mix random and non-random under-sampling were executed. The peak-signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) were examined for various numbers of training images, sampling rates, and numbers of training epochs. Results: The experimental results demonstrated that reconstruction time is drastically reduced to 0.022 s per image compared with that for conventional iterative reconstruction. The PSNR and SSIM were improved as the coherence of the sampling pattern increases. These results indicate that a deep CNN can learn coherent artifacts and is effective especially for cases where the randomness of k-space sampling is rather low. Simulation studies showed that variable density non-random under-sampling was a promising sampling pattern in 1D-random under-sampling of 2D image acquisition. Conclusion: A DRL-CNN can recognize and predict aliasing artifacts with low incoherence. It was demonstrated that reconstruction time is significantly reduced and the improvement in the PSNR and SSIM is higher in 1D-random under-sampling than in 2D. The requirement of incoherence for aliasing artifacts is different from that for iterative reconstruction.
引用
收藏
页码:190 / 203
页数:14
相关论文
共 28 条
[1]  
[Anonymous], 2013, P 30 INT C MACH LEAR
[2]  
Candès EJ, 2008, IEEE SIGNAL PROC MAG, V25, P21, DOI 10.1109/MSP.2007.914731
[3]   An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [J].
Daubechies, I ;
Defrise, M ;
De Mol, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (11) :1413-1457
[4]  
Diederik PK, 2015, P 2015 INT C LEARN R
[5]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[6]   The Split Bregman Method for L1-Regularized Problems [J].
Goldstein, Tom ;
Osher, Stanley .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (02) :323-343
[7]   Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) [J].
Griswold, MA ;
Jakob, PM ;
Heidemann, RM ;
Nittka, M ;
Jellus, V ;
Wang, JM ;
Kiefer, B ;
Haase, A .
MAGNETIC RESONANCE IN MEDICINE, 2002, 47 (06) :1202-1210
[8]  
Hammernik K., 2017, ISMRM 25th Annual Meeting, page, P0644
[9]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[10]   Deep Neural Networks for Acoustic Modeling in Speech Recognition [J].
Hinton, Geoffrey ;
Deng, Li ;
Yu, Dong ;
Dahl, George E. ;
Mohamed, Abdel-rahman ;
Jaitly, Navdeep ;
Senior, Andrew ;
Vanhoucke, Vincent ;
Patrick Nguyen ;
Sainath, Tara N. ;
Kingsbury, Brian .
IEEE SIGNAL PROCESSING MAGAZINE, 2012, 29 (06) :82-97