Semantic Labeling of Indoor Environments from 3D RGB Maps

被引:0
|
作者
Brucker, Manuel [1 ]
Durner, Maximilian [1 ]
Ambrus, Rares [2 ]
Marton, Zoltan Csaba [1 ]
Wendt, Axel [3 ,4 ]
Jensfelt, Patric [2 ]
Arras, Kai O. [3 ,4 ]
Triebel, Rudolph [1 ,5 ]
机构
[1] German Aerosp Ctr DLR, Inst Robot & Mechatron, D-82234 Oberpfaffenhofen, Germany
[2] KTH Royal Inst Technol, Ctr Autonomous Syst, SE-10044 Stockholm, Sweden
[3] Robert Bosch, Corp Res, St Joseph, MI USA
[4] Robert Bosch, Corp Res, Gerlingen, Germany
[5] Tech Univ Munich, Dep Comp Sci, Munich, Germany
来源
2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA) | 2018年
基金
瑞典研究理事会;
关键词
OBJECT DETECTION; SCENE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present an approach to automatically assign semantic labels to rooms reconstructed from 3D RGB maps of apartments. Evidence for the room types is generated using state-of-the-art deep-learning techniques for scene classification and object detection based on automatically generated virtual RGB views, as well as from a geometric analysis of the map's 3D structure. The evidence is merged in a conditional random field, using statistics mined from different datasets of indoor environments. We evaluate our approach qualitatively and quantitatively and compare it to related methods.
引用
收藏
页码:1871 / 1878
页数:8
相关论文
共 50 条
  • [31] Teachers in Concordance for Pseudo-Labeling of 3D Sequential Data
    Gebrehiwot, Awet Haileslassie
    Vacek, Patrik
    Hurych, David
    Zimmermann, Karel
    Perez, Patrick
    Svoboda, Tomas
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (02) : 536 - 543
  • [32] BMFN3D: Bidirectional multilayer fusion network for indoor 3D object detection
    Cheng, Jun
    Zhang, Sheng
    ELECTRONICS LETTERS, 2022, 58 (18) : 696 - 698
  • [33] Door and Window Detection in 3D Point Cloud of Indoor Scenes
    Shen L.
    Li G.
    Xian C.
    Jiang Y.
    Xiong Y.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2019, 31 (09): : 1494 - 1501
  • [34] ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes
    Dai, Angela
    Chang, Angel X.
    Savva, Manolis
    Halber, Maciej
    Funkhouser, Thomas
    Niessner, Matthias
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2432 - 2443
  • [35] SOFW: A Synergistic Optimization Framework for Indoor 3D Object Detection
    Dai, Kun
    Jiang, Zhiqiang
    Xie, Tao
    Wang, Ke
    Liu, Dedong
    Fan, Zhendong
    Li, Ruifeng
    Zhao, Lijun
    Omar, Mohamed
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 637 - 651
  • [36] RangeLVDet: Boosting 3D Object Detection in LIDAR With Range Image and RGB Image
    Zhang, Zehan
    Liang, Zhidong
    Zhang, Ming
    Zhao, Xian
    Li, Hao
    Yang, Ming
    Tan, Wenming
    Pu, Shiliang
    IEEE SENSORS JOURNAL, 2022, 22 (02) : 1391 - 1403
  • [37] An End-to-End Deep Learning Network for 3D Object Detection From RGB-D Data Based on Hough Voting
    Yan, Ming
    Li, Zhongtong
    Yu, Xinyan
    Jin, Cong
    IEEE ACCESS, 2020, 8 : 138810 - 138822
  • [38] RGB-D Images for Objects Recognition using 3D Point Clouds and RANSAC Plane Fitting
    Jalal, Ahmad
    Sarwar, M. Zeeshan
    Kim, Kibum
    PROCEEDINGS OF 2021 INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGIES (IBCAST), 2021, : 518 - 523
  • [39] 3D Object Detection With Multi-Frame RGB-Lidar Feature Alignment
    Ercelik, Emec
    Yurtsever, Ekim
    Knoll, Alois
    IEEE ACCESS, 2021, 9 : 143138 - 143149
  • [40] 3D ToF LiDAR for Mobile Robotics in Harsh Environments: A Review
    Yang, Tao
    Hu, Jinwen
    Li, You
    Zhao, Cheng
    Sun, Li
    Krajnik, Tomas
    Yan, Zhi
    UNMANNED SYSTEMS, 2024,