Rogue waves on the background of periodic standing waves in the derivative nonlinear Schrodinger equation

被引:56
作者
Chen, Jinbing [1 ]
Pelinovsky, Dmitry E. [2 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 210096, Jiangsu, Peoples R China
[2] McMaster Univ, Dept Math, Hamilton, ON L8S 4K1, Canada
基金
中国国家自然科学基金;
关键词
MODULATIONAL INSTABILITY; NLS;
D O I
10.1103/PhysRevE.103.062206
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The derivative nonlinear Schrodinger (DNLS) equation is the canonical model for the dynamics of nonlinear waves in plasma physics and optics. We study exact solutions describing rogue waves on the background of periodic standing waves in the DNLS equation. We show that the space-time localization of a rogue wave is only possible if the periodic standing wave is modulationally unstable. If the periodic standing wave is modulationally stable, the rogue wave solutions degenerate into algebraic solitons propagating along the background and interacting with the periodic standing waves. Maximal amplitudes of rogue waves are found analytically and confirmed numerically.
引用
收藏
页数:25
相关论文
共 40 条
[31]   Real Lax spectrum implies spectral stability [J].
Upsal, Jeremy ;
Deconinck, Bernard .
STUDIES IN APPLIED MATHEMATICS, 2020, 145 (04) :765-790
[32]   Maximal amplitudes of hyperelliptic solutions of the derivative nonlinear Schrodinger equation [J].
Wright, Otis C., III .
STUDIES IN APPLIED MATHEMATICS, 2020, 144 (03) :327-356
[33]   Observation of modulation instability and rogue breathers on stationary periodic waves [J].
Xu, Gang ;
Chabchoub, Amin ;
Pelinovsky, Dmitry E. ;
Kibler, Bertrand .
PHYSICAL REVIEW RESEARCH, 2020, 2 (03)
[34]   The Darboux transformation of the derivative nonlinear Schrodinger equation [J].
Xu, Shuwei ;
He, Jingsong ;
Wang, Lihong .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (30)
[35]   Breathers and breather-rogue waves on a periodic background for the derivative nonlinear Schrodinger equation [J].
Xue, Bo ;
Shen, Jing ;
Geng, Xianguo .
PHYSICA SCRIPTA, 2020, 95 (05)
[36]   Rogue wave patterns in the nonlinear Schrodinger equation [J].
Yang, Bo ;
Yang, Jianke .
PHYSICA D-NONLINEAR PHENOMENA, 2021, 419
[37]   Rogue Waves in the Generalized Derivative Nonlinear Schrodinger Equations [J].
Yang, Bo ;
Chen, Junchao ;
Yang, Jianke .
JOURNAL OF NONLINEAR SCIENCE, 2020, 30 (06) :3027-3056
[38]   Modulation instability: The beginning [J].
Zakharov, V. E. ;
Ostrovsky, L. A. .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (05) :540-548
[39]   Finite gap integration of the derivative nonlinear Schrodinger equation: A Riemann-Hilbert method [J].
Zhao, Peng ;
Fan, Engui .
PHYSICA D-NONLINEAR PHENOMENA, 2020, 402
[40]  
Zhou RG, 2007, CHINESE PHYS LETT, V24, P589, DOI 10.1088/0256-307X/24/3/001