An axiomatic approach to image interpolation

被引:239
作者
Caselles, V [1 ]
Morel, JM
Sbert, C
机构
[1] Univ Illes Balears, Dept Math & Informat, Palma de Mallorca 07071, Spain
[2] Univ Paris 09, CEREMADE, F-75775 Paris 16, France
关键词
D O I
10.1109/83.661188
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We discuss possible algorithms for interpolating data given in a set of curves and/or points in the plane. We propose a set of basic assumptions to be satisfied by the interpolation algorithms which lead to a set of models in terms of possibly degenerate elliptic partial differential equations. The absolute minimal Lipschitz extension model (AMLE) is singled out and studied in more detail. We show experiments suggesting a possible application, the restoration of images with poor dynamic range.
引用
收藏
页码:376 / 386
页数:11
相关论文
共 26 条
[1]  
Alvarez L., 1993, ARCH RATION MECH AN, V123, P200
[2]  
[Anonymous], 1993, Three-Dimensional Computer Vision: A Geometric Viewpoint
[3]   EXTENSION OF FUNCTIONS SATISFYING LIPSCHITZ CONDITIONS [J].
ARONSSON, G .
ARKIV FOR MATEMATIK, 1967, 6 (06) :551-&
[5]   SKETCH BASED CODING OF GREY LEVEL IMAGES [J].
CARLSSON, S .
SIGNAL PROCESSING, 1988, 15 (01) :57-83
[6]  
Casas JR, 1996, COMP IMAG VIS, P443
[7]  
Casas JR, 1996, THESIS UPC BARCELONA
[8]  
CASELELS V, 1997, AXIOMATIC APPROACH I
[9]   A GEOMETRIC MODEL FOR ACTIVE CONTOURS IN IMAGE-PROCESSING [J].
CASELLES, V ;
CATTE, F ;
COLL, T ;
DIBOS, F .
NUMERISCHE MATHEMATIK, 1993, 66 (01) :1-31
[10]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67