Metallic and porous Ti nanorod arrays for visible-IR light absorption and dendrite-free stable lithium-metal batteries

被引:2
作者
Bae, Minjun [1 ,2 ]
Tan, Chin-An [2 ]
Deng, Da [1 ]
机构
[1] Wayne State Univ, Dept Chem Engn & Mat Sci, Detroit, MI 48202 USA
[2] Wayne State Univ, Dept Mech Engn, Detroit, MI 48202 USA
关键词
black metal; porous nanorod arrays; light absorption; Li-metal anode; dendrite free; batteries; MAGNESIOTHERMIC REDUCTION; EXTERNAL-PRESSURE; SOLID-STATE; ELECTROLYTE; PROGRESS; OXIDE;
D O I
10.1088/1361-6528/abe57a
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
It is still a challenging task to prepare highly porous nanorod arrays of metals formed on substrates for optical and energy storage applications. Herein, we demonstrate the design and synthesis of black color, metallic and highly porous Ti nanorod arrays as novel current collectors for dendrite-free and highly stable Li-metal anodes. The high porosity of metallic nanorod arrays provides numerous heterogeneous nucleation sites and huge contact area and large space for the accommodation of Li metal. The conductive metallic Ti nanorod arrays enhance electrode integration. Effectively, it eliminates formation Li dendrites and demonstrates superior cycling stability over 300 cycles. Additionally, the unique porous structures of the nanorod arrays can decrease the amplitude of forced vibration in narrow space leading to light absorption. Interestingly, the metal is black instead of metallic color. The black metallic nanorod arrays can absorb more than 96% of both visible and infra-red lights. This black color metallic porous nanorod arrays may find additional applications in aerospace, energy, biomedical, defence, and chemical industries.
引用
收藏
页数:6
相关论文
共 26 条
[1]   Thermodynamics of Homogeneous and Heterogeneous Nucleation in the Context of Electrocrystallization [J].
Abyaneh, M. Y. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (03) :D142-D146
[2]   Impact of External Pressure and Electrolyte Transport Properties on Lithium Dendrite Growth [J].
Barai, Pallab ;
Higa, Kenneth ;
Srinivasan, Venkat .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (11) :A2654-A2666
[3]   Magnesiothermic Reduction from Titanium Dioxide to Produce Titanium Powder [J].
Bolivar, Rafael ;
Friedrich, Bernd .
JOURNAL OF SUSTAINABLE METALLURGY, 2019, 5 (02) :219-229
[4]   Li-ion batteries: basics, progress, and challenges [J].
Deng, Da .
ENERGY SCIENCE & ENGINEERING, 2015, 3 (05) :385-418
[5]   Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries [J].
Deng, Da ;
Kim, Min Gyu ;
Lee, Jim Yang ;
Cho, Jaephil .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (08) :818-837
[6]   Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries [J].
Fu, Kun ;
Gong, Yunhui ;
Dai, Jiaqi ;
Gong, Amy ;
Han, Xiaogang ;
Yao, Yonggang ;
Wang, Chengwei ;
Wang, Yibo ;
Chen, Yanan ;
Yan, Chaoyi ;
Li, Yiju ;
Wachsman, Eric D. ;
Hu, Liangbing .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (26) :7094-7099
[7]   A review of recent applications of porous metals and metal oxide in energy storage, sensing and catalysis [J].
Huang, Anqi ;
He, Yangzhuo ;
Zhou, Yuzhou ;
Zhou, Yaoyu ;
Yang, Yuan ;
Zhang, Jiachao ;
Luo, Lin ;
Mao, Qiming ;
Hou, Dongmei ;
Yang, Jian .
JOURNAL OF MATERIALS SCIENCE, 2019, 54 (02) :949-973
[8]  
Kelton KF, 2010, PERGAMON MATER SER, V15, P1
[9]  
Lin DC, 2016, NAT NANOTECHNOL, V11, P626, DOI [10.1038/nnano.2016.32, 10.1038/NNANO.2016.32]
[10]   Advancing Lithium Metal Batteries [J].
Liu, Bin ;
Zhang, Ji-Guang ;
Xu, Wu .
JOULE, 2018, 2 (05) :833-845