Application of Shehu transform to Atangana-Baleanu derivatives

被引:57
作者
Bokhari, Ahmed [1 ]
Baleanu, Dumitru [2 ,3 ]
Belgacem, Rachid [1 ]
机构
[1] Hassiba Benbouali Univ Chlef, Fac Exact Sci & Informat, Dept Math, Ouled Fares Dist, Algeria
[2] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
[3] Inst Space Sci, R-077125 Magurle Bucharest, Romania
来源
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS | 2020年 / 20卷 / 02期
关键词
Shehu transform; Mittag-Leffler kernel; non-singular and non-local fractional operators;
D O I
10.22436/jmcs.020.02.03
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, Shehu Maitama and Weidong Zhao proposed a new integral transform, namely, Shehu transform, which generalizes both the Sumudu and Laplace integral transforms. In this paper, we present new further properties of this transform. We apply this transformation to Atangana-Baleanu derivatives in Caputo and in Riemann-Liouville senses to solve some fractional differential equations.
引用
收藏
页码:101 / 107
页数:7
相关论文
共 15 条