Quantitative MRI for hepatic fat fraction and T2* measurement in pediatric patients with non-alcoholic fatty liver disease

被引:46
作者
Deng, Jie [1 ,4 ]
Fishbein, Mark H. [2 ]
Rigsby, Cynthia K. [1 ,4 ]
Zhang, Gang [3 ]
Schoeneman, Samantha E. [1 ]
Donaldson, James S. [1 ,4 ]
机构
[1] Ann & Robert H Lurie Childrens Hosp Chicago, Chicago, IL 60611 USA
[2] Ann Robert H Lurie Childrens Hosp Chicago, Div Gastroenterol Hepatol & Nutr, Chicago, IL USA
[3] Ann & Robert H Lurie Childrens Hosp Chicago, Biostat Res Core, Chicago, IL USA
[4] Northwestern Univ, Dept Radiol, Feinberg Sch Med, Chicago, IL 60611 USA
关键词
Non-alcoholic fatty liver disease; Multi-point Dixon; Multi-interference model; Magnetic resonance imaging; Children; Young adults; QUANTIFICATION; STEATOSIS; WATER; IDEAL; ADOLESCENTS; PREVALENCE; ULTRASOUND; SEPARATION; DIAGNOSIS; ACCURACY;
D O I
10.1007/s00247-014-3024-y
中图分类号
R72 [儿科学];
学科分类号
100202 ;
摘要
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in children. The gold standard for diagnosis is liver biopsy. MRI is a non-invasive imaging method to provide quantitative measurement of hepatic fat content. The methodology is particularly appealing for the pediatric population because of its rapidity and radiation-free imaging techniques. To develop a multi-point Dixon MRI method with multi-interference models (multi-fat-peak modeling and bi-exponential T2* correction) for accurate hepatic fat fraction (FF) and T2* measurements in pediatric patients with NAFLD. A phantom study was first performed to validate the accuracy of the MRI fat fraction measurement by comparing it with the chemical fat composition of the ex-vivo pork liver-fat homogenate. The most accurate model determined from the phantom study was used for fat fraction and T2* measurements in 52 children and young adults referred from the pediatric hepatology clinic with suspected or identified NAFLD. Separate T2* values of water (T2*(W)) and fat (T2*(F)) components derived from the bi-exponential fitting were evaluated and plotted as a function of fat fraction. In ten patients undergoing liver biopsy, we compared histological analysis of liver fat fraction with MRI fat fraction. In the phantom study the 6-point Dixon with 5-fat-peak, bi-exponential T2* modeling demonstrated the best precision and accuracy in fat fraction measurements compared with other methods. This model was further calibrated with chemical fat fraction and applied in patients, where similar patterns were observed as in the phantom study that conventional 2-point and 3-point Dixon methods underestimated fat fraction compared to the calibrated 6-point 5-fat-peak bi-exponential model (P < 0.0001). With increasing fat fraction, T2*(W) (27.9 +/- 3.5 ms) decreased, whereas T2*(F) (20.3 +/- 5.5 ms) increased; and T2*(W) and T2*(F) became increasingly more similar when fat fraction was higher than 15-20%. Histological fat fraction measurements in ten patients were highly correlated with calibrated MRI fat fraction measurements (Pearson correlation coefficient r = 0.90 with P = 0.0004). Liver MRI using multi-point Dixon with multi-fat-peak and bi-exponential T2* modeling provided accurate fat quantification in children and young adults with non-alcoholic fatty liver disease and may be used to screen at-risk or affected individuals and to monitor disease progress noninvasively.
引用
收藏
页码:1379 / 1387
页数:9
相关论文
共 24 条
[1]   Relaxation effects in the quantification of fat using gradient echo imaging [J].
Bydder, Mark ;
Yokoo, Takeshi ;
Hamilton, Gavin ;
Middleton, Michael S. ;
Chavez, Alyssa D. ;
Schwimmer, Jeffrey B. ;
Lavine, Joel E. ;
Sirlin, Claude B. .
MAGNETIC RESONANCE IMAGING, 2008, 26 (03) :347-359
[2]   Assessment of liver fat quantification in the presence of iron [J].
Bydder, Mark ;
Shiehmorteza, Masoud ;
Yokoo, Takeshi ;
Sugay, Sebastian ;
Middleton, Michael S. ;
Girard, Olivier ;
Schroeder, Michael E. ;
Wolfson, Tanya ;
Gamst, Anthony ;
Sirlin, Claude .
MAGNETIC RESONANCE IMAGING, 2010, 28 (06) :767-776
[3]   Fatty Liver Disease: MR Imaging Techniques for the Detection and Quantification of Liver Steatosis [J].
Cassidy, Fiona Hughes ;
Yokoo, Takeshi ;
Aganovic, Lejla ;
Hanna, Robert F. ;
Bydder, Mark ;
Middleton, Michael S. ;
Hamilton, Gavin ;
Chavez, Alyssa D. ;
Schwimmer, Jeffrey B. ;
Sirlin, Claude B. .
RADIOGRAPHICS, 2009, 29 (01) :231-260
[4]   Non-alcoholic fatty liver disease: a massive problem [J].
Day, Christopher P. .
CLINICAL MEDICINE, 2011, 11 (02) :176-178
[5]   SIMPLE PROTON SPECTROSCOPIC IMAGING [J].
DIXON, WT .
RADIOLOGY, 1984, 153 (01) :189-194
[6]   Hepatic MRI for fat quantitation - Its relationship to fat morphology, diagnosis, and ultrasound [J].
Fishbein, M ;
Castro, F ;
Cheruku, S ;
Jain, S ;
Webb, B ;
Gleason, T ;
Stevens, WR .
JOURNAL OF CLINICAL GASTROENTEROLOGY, 2005, 39 (07) :619-625
[7]   Introduction of fast MR imaging in the assessment of hepatic steatosis [J].
Fishbein, MH ;
Gardner, KG ;
Potter, CJ ;
Schmalbrock, P ;
Smith, MA .
MAGNETIC RESONANCE IMAGING, 1997, 15 (03) :287-293
[8]   Pediatric non alcoholic fatty liver disease: old and new concepts on development, progression, metabolic insight and potential treatment targets [J].
Giorgio, Valentina ;
Prono, Federica ;
Graziano, Francesca ;
Nobili, Valerio .
BMC PEDIATRICS, 2013, 13
[9]   The prevalence of childhood overweight/obesity and the epidemic changes in 1985-2000 for Chinese school-age children and adolescents [J].
Ji, C. -Y. .
OBESITY REVIEWS, 2008, 9 :78-81
[10]   Hepatic Fat Quantification Using Chemical Shift MR Imaging and MR Spectroscopy in the Presence of Hepatic Iron Deposition: Validation in Phantoms and in Patients With Chronic Liver Disease [J].
Lee, Seung Soo ;
Lee, Youngjoo ;
Kim, Namkug ;
Kim, Seong Who ;
Byun, Jae Ho ;
Park, Seong Ho ;
Lee, Moon-Gyu ;
Ha, Hyun Kwon .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2011, 33 (06) :1390-1398