Controllable fabrication of atomic dispersed low-coordination nickel-nitrogen sites for highly efficient electrocatalytic CO2 reduction

被引:39
|
作者
Qiu, Liming [1 ]
Shen, Shuwen [1 ]
Ma, Cheng [1 ]
Lv, Chunmei [1 ]
Guo, Xing [1 ]
Jiang, Hongliang [1 ]
Liu, Zhen
Qiao, Wenming [1 ]
Ling, Licheng [1 ,2 ]
Wang, Jitong [1 ,2 ]
机构
[1] East China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China
[2] East China Univ Sci & Technol, Key Lab Specially Funct Polymer Mat & Related Tec, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrocatalytic CO2 reduction; Ni single-atom catalyst; Coordination environment; Metal nanoparticles; Density functional theory calculation; X-RAY; ELECTROREDUCTION; SELECTIVITY; TRANSITION; CATALYSTS;
D O I
10.1016/j.cej.2022.135956
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Single-atom catalysis has been considered as a powerful approach for CO2 reduction reaction (CO2RR) to achieve efficient resource conversion and carbon neutrality. The electrocatalytic activity of single-atom catalysts (SACs) is closely related to the local coordination environment. Herein, Ni SACs with well-defined low-coordination nickel-nitrogen sites (denoted as Ni-SA@N-3-C) have been successfully developed via a facile sacrificial template method. XAS results reveal that the coordination environment of the atomically dispersed Ni active sites can be controlled by the pyrolysis temperature. Significantly, Ni-SA@N-3-C displays remarkably excellent activity toward electrocatalytic CO2RR with CO Faradaic efficiency (FECO) of 96.0% at -0.83 V vs. RHE and remains high FECO exceeding 90% over a broad potential range from -0.63 to -0.93 V vs. RHE, outperforming those of Ni-SA@N-4-C and Ni-NP@NC. More importantly, Ni-SA@N-3-C exhibits an excellent CO selectivity of 99.2% with a considerable current density of -160 mA cm(-2) in the flow cell reactor. Density functional theory (DFT) calculations further suggest that the Ni single atoms coordinated by three N atoms possesses a suitable free energy barrier for *COOH formation and *CO desorption, thereby exhibiting the most excellent CO2RR performance. This study sheds a new light on the design of SACs with controllable coordination structures for CO2RR.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Modified Cu active sites by alloying for efficient electrocatalytic reduction CO2 to CO
    Wang, Yan
    Xie, Ruikuan
    Ci, Naixuan
    Zhu, Zhiyuan
    Li, Chaoyi
    Chai, Guoliang
    Qiu, Hua-Jun
    Zhang, Yinghe
    JOURNAL OF ENERGY CHEMISTRY, 2024, 99 : 450 - 457
  • [22] Transforming active sites in nickel-nitrogen-carbon catalysts for efficient electrochemical CO2 reduction to CO
    Daiyan, Rahman
    Zhu, Xiaofeng
    Tong, Zizheng
    Gong, Lele
    Razmjou, Amir
    Liu, Ru-Shi
    Xia, Zhenhai
    Lu, Xunyu
    Dai, Liming
    Amal, Rose
    NANO ENERGY, 2020, 78
  • [23] Electrocatalytic CO2 reduction reaction on dual-metal- and nitrogen-doped graphene: coordination environment effect of active sites
    He, Peinan
    Feng, Haisong
    Wang, Si
    Ding, Hu
    Liang, Yujie
    Ling, Min
    Zhang, Xin
    MATERIALS ADVANCES, 2022, 3 (11): : 4566 - 4577
  • [24] Highly dispersed atomic-level Ni active sites confined in defects for efficient electrocatalytic reduction of carbon dioxide
    Zhang, Wenjun
    Zhao, Chen
    Yang, Yang
    Chen, Ruotong
    Wu, Yue
    Dai, Jiaqi
    Zhang, Yuxing
    Liu, Huajie
    Liu, Mingyang
    JOURNAL OF ENERGY CHEMISTRY, 2024, 99 : 1 - 10
  • [25] Hollow Porous Ag Spherical Catalysts for Highly Efficient and Selective Electrocatalytic Reduction of CO2 to CO
    Liu, Shao-Qing
    Wu, Shu-Wen
    Gao, Min-Rui
    Li, Mao-Shuai
    Fu, Xian-Zhu
    Luo, Jing-Li
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (17) : 14443 - 14450
  • [26] Nickel-carbide interface encapsulated in nitrogen-doped carbon for efficient electrocatalytic CO2 reduction
    Zhou, Chong
    Rong, Youwen
    Zhang, Rui
    Yan, Chuanchuan
    Yang, Yaoyue
    Jiang, Xiaole
    Gao, Dunfeng
    APPLIED SURFACE SCIENCE, 2023, 637
  • [27] Photocatalytic CO2 reduction by highly dispersed Cu sites on TiO2
    Liu, Chao
    Iyemperumal, Satish Kumar
    Deskins, Nathaniel Aaron
    Li, Gonghu
    JOURNAL OF PHOTONICS FOR ENERGY, 2017, 7 (01):
  • [28] Volcano Trend in Electrocatalytic CO2 Reduction Activity over Atomically Dispersed Metal Sites on Nitrogen-Doped Carbon
    Li, Jingkun
    Prslja, Paulina
    Shinagawa, Tatsuya
    Martin Fernandez, Antonio Jose
    Krumeich, Frank
    Artyushkova, Kateryna
    Atanassov, Plamen
    Zitolo, Andrea
    Zhou, Yecheng
    Garcia-Muelas, Rodrigo
    Lopez, Nuria
    Perez-Ramirez, Javier
    Jaouen, Frederic
    ACS CATALYSIS, 2019, 9 (11) : 10426 - 10439
  • [29] Robust coal matrix intensifies electron/substrate interaction of nickel-nitrogen (Ni-N) active sites for efficient CO2 electroreduction at industrial current density
    Liu, Weiqi
    Wei, Shilin
    Bai, Peiyao
    Yang, Chuangchuang
    Xu, Lang
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 299
  • [30] Atomic Bridging of Sn Single Atom with Nitrogen and Oxygen Atoms for the Selective Electrocatalytic Reduction of CO2
    Wulan, Bari
    Cao, Xueying
    Tan, Dongxing
    Shu, Xinxin
    Ma, Jizhen
    Hou, Shaoqi
    Zhang, Jintao
    CCS CHEMISTRY, 2023, 5 (10): : 2415 - 2425