Simulation of fluid-structure interaction in a microchannel using the lattice Boltzmann method and size-dependent beam element on a graphics processing unit

被引:13
|
作者
Esfahanian, Vahid [1 ]
Dehdashti, Esmaeil [1 ]
Dehrouye-Semnani, Amir Mehdi [1 ]
机构
[1] Univ Tehran, Dept Mech Engn, Tehran 51514395, Iran
关键词
fluid-structure interaction; graphics processing unit; lattice Boltzmann method; size-dependent beam element; PIPES CONVEYING FLUID; PARTICULATE SUSPENSIONS; NUMERICAL SIMULATIONS; EQUATION; RELEVANCE; STATE; FLOW; GAS; FEM;
D O I
10.1088/1674-1056/23/8/084702
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fluid-structure interaction (FSI) problems in microchannels play a prominent role in many engineering applications. The present study is an effort toward the simulation of flow in microchannel considering FSI. The bottom boundary of the microchannel is simulated by size-dependent beam elements for the finite element method (FEM) based on a modified couple stress theory. The lattice Boltzmann method (LBM) using the D2Q13 LB model is coupled to the FEM in order to solve the fluid part of the FSI problem. Because of the fact that the LBM generally needs only nearest neighbor information, the algorithm is an ideal candidate for parallel computing. The simulations are carried out on graphics processing units (GPUs) using computed unified device architecture (CUDA). In the present study, the governing equations are non-dimensionalized and the set of dimensionless groups is exhibited to show their effects on micro-beam displacement. The numerical results show that the displacements of the micro-beam predicted by the size-dependent beam element are smaller than those by the classical beam element.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] LUMA: A many-core, Fluid-Structure Interaction solver based on the Lattice-Boltzmann Method
    Harwood, Adrian R. G.
    O'Connor, Joseph
    Munoz, Jonathan Sanchez
    Santasmasas, Marta Camps
    Revell, Alistair J.
    SOFTWAREX, 2018, 7 : 88 - 94
  • [22] Two-dimensional simulation of fluid-structure interaction using lattice-Boltzmann methods
    Krafczyk, M
    Tölke, J
    Rank, E
    Schulz, M
    COMPUTERS & STRUCTURES, 2001, 79 (22-25) : 2031 - 2037
  • [23] Immersed smoothed finite element method for fluid-structure interaction simulation of aortic valves
    Yao, Jianyao
    Liu, G. R.
    Narmoneva, Daria A.
    Hinton, Robert B.
    Zhang, Zhi-Qian
    COMPUTATIONAL MECHANICS, 2012, 50 (06) : 789 - 804
  • [24] A partitioned approach for two-dimensional fluid-structure interaction problems by a coupled lattice Boltzmann-finite element method with immersed boundary
    De Rosis, Alessandro
    Ubertini, Stefano
    Ubertini, Francesco
    JOURNAL OF FLUIDS AND STRUCTURES, 2014, 45 : 202 - 215
  • [25] A Geometry-Adaptive Immersed Boundary-Lattice Boltzmann Method for Modelling Fluid-Structure Interaction Problems
    Xu, Lincheng
    Wang, Li
    Tian, Fang-Bao
    Young, John
    Lai, Joseph C. S.
    IUTAM SYMPOSIUM ON RECENT ADVANCES IN MOVING BOUNDARY PROBLEMS IN MECHANICS, 2019, 34 : 161 - 171
  • [26] A phase field-immersed boundary-lattice Boltzmann coupling method for fluid-structure interaction analysis
    Wu, Zhijian
    Guo, Li
    OCEAN ENGINEERING, 2024, 301
  • [27] A moving-grid approach for fluid-structure interaction problems with hybrid lattice Boltzmann method
    Di Ilio, G.
    Chiappini, D.
    Ubertini, S.
    Bella, G.
    Succi, S.
    COMPUTER PHYSICS COMMUNICATIONS, 2019, 234 : 137 - 145
  • [28] An immersed boundary-lattice Boltzmann method with hybrid multiple relaxation times for viscoplastic fluid-structure interaction problems
    Hui, Da
    Wang, Zekun
    Cai, Yunan
    Wu, Wenbin
    Zhang, Guiyong
    Liu, Moubin
    APPLIED OCEAN RESEARCH, 2022, 119
  • [29] A new approach using lattice Boltzmann method to simulate fluid structure interaction
    Benamour, M.
    Liberge, E.
    Beghein, C.
    MATERIALS & ENERGY I (2015) / MATERIALS & ENERGY II (2016), 2017, 139 : 481 - 486
  • [30] Fluid-structure interaction using the particle finite element method
    Idelsohn, SR
    Oñate, E
    Del Pin, F
    Calvo, N
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (17-18) : 2100 - 2123