Exploiting Natural Variation of Secondary Metabolism Identifies a Gene Controlling the Glycosylation Diversity of Dihydroxybenzoic Acids in Arabidopsis thaliana

被引:33
|
作者
Li, Xu [1 ]
Svedin, Elisabeth [2 ]
Mo, Huaping [3 ,4 ]
Atwell, Susanna [5 ]
Dilkes, Brian P. [2 ]
Chapple, Clint [1 ]
机构
[1] Purdue Univ, Dept Biochem, W Lafayette, IN 47907 USA
[2] Purdue Univ, Dept Hort & Landscape Architecture, W Lafayette, IN 47907 USA
[3] Purdue Univ, Purdue Interdept NMR Facil, W Lafayette, IN 47907 USA
[4] Purdue Univ, Dept Med Chem & Mol Pharmacol, W Lafayette, IN 47907 USA
[5] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA
关键词
QUANTITATIVE TRAIT LOCI; GENOME-WIDE ASSOCIATION; SALICYLIC-ACID; GENTISIC ACID; LINE POPULATIONS; PLANT-METABOLISM; BIOSYNTHESIS; GLYCOSYLTRANSFERASES; ACCUMULATION; INDUCTION;
D O I
10.1534/genetics.114.168690
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Plant secondary metabolism is an active research area because of the unique and important roles the specialized metabolites have in the interaction of plants with their biotic and abiotic environment, the diversity and complexity of the compounds and their importance to human medicine. Thousands of natural accessions of Arabidopsis thaliana characterized with increasing genomic precision are available, providing new opportunities to explore the biochemical and genetic mechanisms affecting variation in secondary metabolism within this model species. In this study, we focused on four aromatic metabolites that were differentially accumulated among 96 Arabidopsis natural accessions as revealed by leaf metabolic profiling. Using UV, mass spectrometry, and NMR data, we identified these four compounds as different dihydroxybenzoic acid (DHBA) glycosides, namely 2,5-dihydroxybenzoic acid (gentisic acid) 5-O-beta-D-glucoside, 2,3-dihydroxybenzoic acid 3-O-beta-D-glucoside, 2,5-dihydroxybenzoic acid 5-O-beta-D-xyloside, and 2,3-dihydroxybenzoic acid 3-O-beta-D-xyloside. Quantitative trait locus (QTL) mapping using recombinant inbred lines generated from C24 and Col-0 revealed a major-effect QTL controlling the relative proportion of xylosides vs. glucosides. Association mapping identified markers linked to a gene encoding a UDP glycosyltransferase gene. Analysis of Transfer DNA (T-DNA) knockout lines verified that this gene is required for DHBA xylosylation in planta and recombinant protein was able to xylosylate DHBA in vitro. This study demonstrates that exploiting natural variation of secondary metabolism is a powerful approach for gene function discovery.
引用
收藏
页码:1267 / +
页数:14
相关论文
共 35 条
  • [1] Natural Variation Identifies Multiple Loci Controlling Petal Shape and Size in Arabidopsis thaliana
    Abraham, Mary C.
    Metheetrairut, Chanatip
    Irish, Vivian F.
    PLOS ONE, 2013, 8 (02):
  • [2] Natural Diversity in Flowering Responses of Arabidopsis thaliana Caused by Variation in a Tandem Gene Array
    Rosloski, Sarah Marie
    Jali, Sathya Sheela
    Balasubramanian, Sureshkumar
    Weigel, Detlef
    Grbic, Vojislava
    GENETICS, 2010, 186 (01) : 263 - U435
  • [3] Natural variation in arsenate tolerance identifies an arsenate reductase in Arabidopsis thaliana
    Sanchez-Bermejo, Eduardo
    Castrillo, Gabriel
    del Llano, Barbara
    Navarro, Cristina
    Zarco-Fernandez, Sonia
    Jorge Martinez-Herrera, Dannys
    Leo-del Puerto, Yolanda
    Munoz, Riansares
    Camara, Carmen
    Paz-Ares, Javier
    Alonso-Blanco, Carlos
    Leyva, Antonio
    NATURE COMMUNICATIONS, 2014, 5
  • [4] Natural variation in arsenate tolerance identifies an arsenate reductase in Arabidopsis thaliana
    Eduardo Sánchez-Bermejo
    Gabriel Castrillo
    Bárbara del Llano
    Cristina Navarro
    Sonia Zarco-Fernández
    Dannys Jorge Martinez-Herrera
    Yolanda Leo-del Puerto
    Riansares Muñoz
    Carmen Cámara
    Javier Paz-Ares
    Carlos Alonso-Blanco
    Antonio Leyva
    Nature Communications, 5
  • [5] Exploiting the natural variation of Arabidopsis thaliana for the seed-specific production of proteins
    Demeyer, R.
    De Loose, M.
    Van Bockstaele, E.
    Van Droogenbroeck, B.
    EUPHYTICA, 2012, 183 (01) : 83 - 93
  • [6] Gene Transposition Causing Natural Variation for Growth in Arabidopsis thaliana
    Vlad, Daniela
    Rappaport, Fabrice
    Simon, Matthieu
    Loudet, Olivier
    PLOS GENETICS, 2010, 6 (05): : 21
  • [7] Exploiting natural variation to uncover candidate genes that control element accumulation in Arabidopsis thaliana
    Conn, Simon J.
    Berninger, Philipp
    Broadley, Martin R.
    Gilliham, Matthew
    NEW PHYTOLOGIST, 2012, 193 (04) : 859 - 866
  • [8] Exploiting natural genetic diversity and mutant resources of Arabidopsis thaliana to study the A-thaliana-Plasmodiophora brassicae interaction
    Alix, K.
    Lariagon, C.
    Delourme, R.
    Manzanares-Dauleux, M. J.
    PLANT BREEDING, 2007, 126 (02) : 218 - 221
  • [9] Natural Variation Identifies ICARUS1, a Universal Gene Required for Cell Proliferation and Growth at High Temperatures in Arabidopsis thaliana
    Zhu, Wangsheng
    Ausin, Israel
    Seleznev, Andrei
    Mendez-Vigo, Belen
    Xavier Pico, F.
    Sureshkumar, Sridevi
    Sundaramoorthi, Vignesh
    Bulach, Dieter
    Powell, David
    Seemann, Torsten
    Alonso-Blanco, Carlos
    Balasubramanian, Sureshkumar
    PLOS GENETICS, 2015, 11 (05):
  • [10] Natural genetic variation in Arabidopsis thaliana defense metabolism genes modulates field fitness
    Kerwin, Rachel
    Feusier, Julie
    Corwin, Jason
    Rubin, Matthew
    Lin, Catherine
    Muok, Alise
    Larson, Brandon
    Li, Baohua
    Joseph, Bindu
    Francisco, Marta
    Copeland, Daniel
    Weinig, Cynthia
    Kliebenstein, Daniel J.
    ELIFE, 2015, 4