N-, P-, and S-doped graphene-like carbon catalysts derived from onium salts with enhanced oxygen chemisorption for Zn-air battery cathodes

被引:318
作者
Zheng, Xiangjun [1 ]
Wu, Jiao [1 ]
Cao, Xuecheng [1 ]
Abbott, Janel [2 ]
Jin, Chao [1 ]
Wang, Haibo [1 ]
Strasser, Peter [4 ]
Yang, Ruizhi [1 ]
Chen, Xin [3 ]
Wu, Gang [2 ]
机构
[1] Soochow Univ, Key Lab Adv Carbon Mat & Wearable Energy Technol, Coll Energy, Soochow Inst Energy & Mat Innovat, Suzhou 215006, Peoples R China
[2] SUNY Buffalo, Dept Chem & Biol Engn, Buffalo, NY 14260 USA
[3] Southwest Petr Univ, Coll Chem & Chem Engn, Ctr New Energy Mat & Technol, Chengdu 610500, Sichuan, Peoples R China
[4] Tech Univ Berlin, Div Chem Engn, Dept Chem, D-10623 Berlin, Germany
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
N; P; S-doped graphene; Onium salts; Electrocatalysts; Oxygen reduction; Zn-air batteries; HIGH ELECTROCATALYTIC ACTIVITY; METAL-FREE ELECTROCATALYSTS; REDUCTION REACTION ACTIVITY; RING-DISK ELECTRODE; BIFUNCTIONAL ELECTROCATALYST; ALKALINE ELECTROLYTES; EVOLUTION REACTIONS; ION BATTERIES; NITROGEN; SULFUR;
D O I
10.1016/j.apcatb.2018.09.054
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Compared to currently studied metal-based catalysts, metal-free heteroatom-doped carbon catalysts have many advantages including no issues of degradation and contamination from metal dissolution. Relying on single type of doping usually cannot yield optimal electronic and geometric structures favorable for the oxygen reduction reaction (ORR). Herein, heteroatom N, P, and S simultaneously doped graphene-like carbon (NPS-G) was successfully synthesized from onium salts by a facile one-step pyrolysis method. The resulting metal-free NPS-G catalyst with optimized N, P, and S contents exhibits enhanced catalytic activity towards the ORR in alkaline media, relative to any single doping. In particular, this metal-free catalyst shows an encouraging half-wave potential (E-1/2 = 0.857 V) comparable to that of metal-based catalysts. It also demonstrates excellent electrochemical stability and methanol tolerance. This catalyst was further studied as a cathode in a primary Zn-air battery, showing exceptional open-circuit voltage (1.372 V) and power density (0.151 W cm(-2)). The NPS-G cathode delivers a specific capacity of 686 mA h g(zn)(-1) at a current density of 10 mA cm(-2) while utilizing 82.2% of the theoretical capacity (835 mA h g(zn)(-1)). The origin of high activity associated with various heteroatom dopings is elucidated through X-ray photoelectron spectroscopy analysis and density functional theory studies. The enhanced chemisorption of oxygen species (*OOH, *O and *OH) onto the dopants of the NPS-G catalysts reduces charge transfer resistance and facilitate the ORR. The porous 2D structure also contributes to the increase of active site density and facile mass transport.
引用
收藏
页码:442 / 451
页数:10
相关论文
共 69 条
[1]   Nitrogen and Sulfur Codoped Graphene: Multifunctional Electrode Materials for High-Performance Li-Ion Batteries and Oxygen Reduction Reaction [J].
Ai, Wei ;
Luo, Zhimin ;
Jiang, Jian ;
Zhu, Jianhui ;
Du, Zhuzhu ;
Fan, Zhanxi ;
Xie, Linghai ;
Zhang, Hua ;
Huang, Wei ;
Yu, Ting .
ADVANCED MATERIALS, 2014, 26 (35) :6186-+
[2]  
Buckel F, 2000, ADV MATER, V12, P901, DOI 10.1002/1521-4095(200006)12:12<901::AID-ADMA901>3.3.CO
[3]  
2-2
[4]   Nitrogen and Sulfur Dual-Doped Non-Noble Catalyst Using Fluidic Acrylonitrile Telomer as Precursor for Efficient Oxygen Reduction [J].
Chang, Yuanqin ;
Hong, Fei ;
He, Chuanxin ;
Zhang, Qianling ;
Liu, Jianhong .
ADVANCED MATERIALS, 2013, 25 (34) :4794-4799
[5]   Nitrogen-Doped Carbon Nanocages as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction [J].
Chen, Sheng ;
Bi, Jiyu ;
Zhao, Yu ;
Yang, Lijun ;
Zhang, Chen ;
Ma, Yanwen ;
Wu, Qiang ;
Wang, Xizhang ;
Hu, Zheng .
ADVANCED MATERIALS, 2012, 24 (41) :5593-5597
[6]   Probing the activity of pure and N-doped fullerenes towards oxygen reduction reaction by density functional theory [J].
Chen, Xin ;
Chang, Junbo ;
Ke, Qiang .
CARBON, 2018, 126 :53-57
[7]   Cobalt or Nickel Doped SiC Nanocages as Efficient Electrocatalyst for Oxygen Reduction Reaction: A Computational Prediction [J].
Chen, Xin ;
Sun, Fanghua ;
Chang, Junbo .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (06) :F616-F619
[8]   Graphyne nanotubes as electrocatalysts for oxygen reduction reaction: the effect of doping elements on the catalytic mechanisms [J].
Chen, Xin .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (43) :29340-29343
[9]   Intrinsic Relationship between Enhanced Oxygen Reduction Reaction Activity and Nanoscale Work Function of Doped Carbons [J].
Cheon, Jae Yeong ;
Kim, Jong Hun ;
Kim, Jae Hyung ;
Goddeti, Kalyan C. ;
Park, Jeong Young ;
Joo, Sang Hoon .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (25) :8875-8878
[10]   Binary and Ternary Doping of Nitrogen, Boron, and Phosphorus into Carbon for Enhancing Electrochemical Oxygen Reduction Activity [J].
Choi, Chang Hyuck ;
Park, Sung Hyeon ;
Woo, Seong Ihl .
ACS NANO, 2012, 6 (08) :7084-7091