Consistent systems of correlators in non-semisimple conformal field theory

被引:29
作者
Fuchs, Jurgen [1 ]
Schweigert, Christoph [2 ]
机构
[1] Karlstads Univ, Teoret Fys, Univ Gatan 21, S-65188 Karlstad, Sweden
[2] Univ Hamburg, Bereich Algebra & Zahlentheorie, Fachbereich Math, Bundesstr 55, D-20146 Hamburg, Germany
关键词
Non-semisimple conformal field theory; Logarithmic conformal field theory; Finite ribbon category; Frobenius algebra; Correlation function; Modular functor; MAPPING CLASS-GROUPS; FINITE TENSOR CATEGORIES; VERTEX OPERATOR-ALGEBRAS; SEWING CONSTRAINTS; CENTRAL EXTENSIONS; REPRESENTATIONS; 3-MANIFOLDS; INVARIANTS; SURFACE;
D O I
10.1016/j.aim.2016.11.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on the modular functor associated with a - not necessarily semisimple - finite non-degenerate ribbon category D, we present a definition of a consistent system of bulk field correlators for a conformal field theory which comprises invariance under mapping class group actions and compatibility with the sewing of surfaces. We show that when restricting to surfaces of genus zero such systems are in bijection with commutative symmetric Frobenius algebras in D, while for surfaces of any genus they are in bijection with modular Frobenius algebras in D. This provides additional insight into structures familiar from rational conformal field theories and extends them to rigid logarithmic conformal field theories. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:598 / 639
页数:42
相关论文
共 47 条
[1]  
[Anonymous], 1971, GRAD TEXTS MATH
[2]   ON FRAMINGS OF 3-MANIFOLDS [J].
ATIYAH, M .
TOPOLOGY, 1990, 29 (01) :1-7
[3]   On the Lego-Teichmuller game [J].
Bakalov, B ;
Kirillov, A .
TRANSFORMATION GROUPS, 2000, 5 (03) :207-244
[4]  
Bakalov B., 2001, AM MATH SOC
[5]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[6]   The complex of pant decompositions of a surface [J].
Benvenuti, Silvia ;
Piergallini, Riccardo .
TOPOLOGY AND ITS APPLICATIONS, 2008, 156 (02) :399-419
[7]   The Witt group of non-degenerate braided fusion categories [J].
Davydov, Alexei ;
Muger, Michael ;
Nikshych, Dmitri ;
Ostrik, Victor .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 677 :135-177
[8]   Centre of an algebra [J].
Davydov, Alexei .
ADVANCES IN MATHEMATICS, 2010, 225 (01) :319-348
[9]  
Deligne P., 1990, Categories tannakiennes, The Grothendieck Festschrift, VII, P111
[10]  
DUPLANTIER B, 1986, J PHYS A-MATH GEN, V19, P1009, DOI 10.1088/0305-4470/19/16/011