Bayesian temporal density estimation with autoregressive species sampling models

被引:0
|
作者
Jo, Youngin [1 ]
Jo, Seongil [2 ]
Lee, Yung-Seop [3 ]
Lee, Jaeyong [4 ]
机构
[1] Kakao Corp, Seongnam 13494, South Korea
[2] Chonbuk Natl Univ, Dept Stat, Inst Appl Stat, Jeonju 54896, South Korea
[3] Dongguk Univ Seoul, Dept Stat, Seoul 04620, South Korea
[4] Seoul Natl Univ, Dept Stat, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Autoregressive species sampling models; Dependent random probability measures; Mixture models; Temporal structured data; PRIORS; INFERENCE;
D O I
10.1016/j.jkss.2018.02.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a novel Bayesian nonparametric (BNP) model, which is built on a class of species sampling models, for estimating density functions of temporal data. In particular, we introduce species sampling mixture models with temporal dependence. To accommodate temporal dependence, we define dependent species sampling models by modeling random support points and weights through an autoregressive model, and then we construct the mixture models based on the collection of these dependent species sampling models. We propose an algorithm to generate posterior samples and present simulation studies to compare the performance of the proposed models with competitors that are based on Dirichlet process mixture models. We apply our method to the estimation of densities for the price of apartment in Seoul, the closing price in Korea Composite Stock Price Index (KOSPI), and climate variables (daily maximum temperature and precipitation) of around the Korean peninsula. (C) 2018 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:248 / 262
页数:15
相关论文
共 50 条
  • [41] On the estimation bias in first-order bifurcating autoregressive models
    Elbayoumi, Tamer M.
    Mostafa, Sayed A.
    STAT, 2021, 10 (01):
  • [42] System identification using autoregressive Bayesian neural networks with nonparametric noise models
    Merkatas, Christos
    Sarkka, Simo
    JOURNAL OF TIME SERIES ANALYSIS, 2023, 44 (03) : 319 - 330
  • [43] Sampling properties of the Bayesian posterior mean with an application to WALS estimation
    De Luca, Giuseppe
    Magnus, Jan R.
    Peracchi, Franco
    JOURNAL OF ECONOMETRICS, 2022, 230 (02) : 299 - 317
  • [44] A Bayesian Framework for Parameter Estimation in Dynamical Models
    Coelho, Flavio Codeco
    Codeco, Claudia Torres
    Gomes, M. Gabriela M.
    PLOS ONE, 2011, 6 (05):
  • [45] Bayesian Joint Estimation of Multiple Graphical Models
    Gan, Lingrui
    Yang, Xinming
    Nariestty, Naveen N.
    Liang, Feng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [46] Computational challenges and temporal dependence in Bayesian nonparametric models
    Argiento, Raffaele
    Ruggiero, Matteo
    STATISTICAL METHODS AND APPLICATIONS, 2018, 27 (02) : 231 - 238
  • [47] Estimation of nonparametric additive models with high order spatial autoregressive errors
    Xu, Guoying
    Bai, Yang
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (02): : 311 - 343
  • [48] Fast sampling methods for Bayesian max-margin models
    Hu, Wenbo
    Zhu, Jun
    Zhang, Bo
    EXPERT SYSTEMS WITH APPLICATIONS, 2017, 69 : 277 - 287
  • [49] Particle-Gibbs Sampling for Bayesian Feature Allocation Models
    Bouchard-Cote, Alexandre
    Roth, Andrew
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [50] Adaptive Bayesian multivariate density estimation with Dirichlet mixtures
    Shen, Weining
    Tokdar, Surya T.
    Ghosal, Subhashis
    BIOMETRIKA, 2013, 100 (03) : 623 - 640