Bayesian temporal density estimation with autoregressive species sampling models

被引:0
|
作者
Jo, Youngin [1 ]
Jo, Seongil [2 ]
Lee, Yung-Seop [3 ]
Lee, Jaeyong [4 ]
机构
[1] Kakao Corp, Seongnam 13494, South Korea
[2] Chonbuk Natl Univ, Dept Stat, Inst Appl Stat, Jeonju 54896, South Korea
[3] Dongguk Univ Seoul, Dept Stat, Seoul 04620, South Korea
[4] Seoul Natl Univ, Dept Stat, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Autoregressive species sampling models; Dependent random probability measures; Mixture models; Temporal structured data; PRIORS; INFERENCE;
D O I
10.1016/j.jkss.2018.02.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a novel Bayesian nonparametric (BNP) model, which is built on a class of species sampling models, for estimating density functions of temporal data. In particular, we introduce species sampling mixture models with temporal dependence. To accommodate temporal dependence, we define dependent species sampling models by modeling random support points and weights through an autoregressive model, and then we construct the mixture models based on the collection of these dependent species sampling models. We propose an algorithm to generate posterior samples and present simulation studies to compare the performance of the proposed models with competitors that are based on Dirichlet process mixture models. We apply our method to the estimation of densities for the price of apartment in Seoul, the closing price in Korea Composite Stock Price Index (KOSPI), and climate variables (daily maximum temperature and precipitation) of around the Korean peninsula. (C) 2018 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:248 / 262
页数:15
相关论文
共 50 条
  • [31] Pairwise likelihood estimation of latent autoregressive count models
    Pedeli, Xanthi
    Varin, Cristiano
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (11) : 3278 - 3293
  • [32] Full Bayesian analysis of double seasonal autoregressive models with real applications
    Amin, Ayman A.
    JOURNAL OF APPLIED STATISTICS, 2024, 51 (08) : 1524 - 1544
  • [33] Bayesian Service Demand Estimation Using Gibbs Sampling
    Wang, Weikun
    Casale, Giuliano
    2013 IEEE 21ST INTERNATIONAL SYMPOSIUM ON MODELING, ANALYSIS & SIMULATION OF COMPUTER AND TELECOMMUNICATION SYSTEMS (MASCOTS 2013), 2013, : 567 - 576
  • [34] Fully Gibbs Sampling Algorithms for Bayesian Variable Selection in Latent Regression Models
    Yamaguchi, Kazuhiro
    Zhang, Jihong
    JOURNAL OF EDUCATIONAL MEASUREMENT, 2023, 60 (02) : 202 - 234
  • [35] Pseudo Bayesian Mixed Models under Informative Sampling
    Savitsky, Terrance D.
    Williams, Matthew R.
    JOURNAL OF OFFICIAL STATISTICS, 2022, 38 (03) : 901 - 928
  • [36] A new Bayesian approach to quantile autoregressive time series model estimation and forecasting
    Cai, Yuzhi
    Stander, Julian
    Davies, Neville
    JOURNAL OF TIME SERIES ANALYSIS, 2012, 33 (04) : 684 - 698
  • [37] Computational Aspects of Bayesian Spectral Density Estimation
    Chopin, N.
    Rousseau, J.
    Liseo, B.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2013, 22 (03) : 533 - 557
  • [38] On estimation of nonparametric regression models with autoregressive and moving average errors
    Zheng, Qi
    Cui, Yunwei
    Wu, Rongning
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2024, 76 (02) : 235 - 262
  • [39] Bayesian density estimation using Bernstein polynomials
    Petrone, S
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1999, 27 (01): : 105 - 126
  • [40] Bayesian Nonparametric Spatially Smoothed Density Estimation
    Hanson, Timothy
    Zhou, Haiming
    de Carvalho, Vanda Inacio
    NEW FRONTIERS OF BIOSTATISTICS AND BIOINFORMATICS, 2018, : 87 - 105