Bayesian temporal density estimation with autoregressive species sampling models

被引:0
|
作者
Jo, Youngin [1 ]
Jo, Seongil [2 ]
Lee, Yung-Seop [3 ]
Lee, Jaeyong [4 ]
机构
[1] Kakao Corp, Seongnam 13494, South Korea
[2] Chonbuk Natl Univ, Dept Stat, Inst Appl Stat, Jeonju 54896, South Korea
[3] Dongguk Univ Seoul, Dept Stat, Seoul 04620, South Korea
[4] Seoul Natl Univ, Dept Stat, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Autoregressive species sampling models; Dependent random probability measures; Mixture models; Temporal structured data; PRIORS; INFERENCE;
D O I
10.1016/j.jkss.2018.02.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a novel Bayesian nonparametric (BNP) model, which is built on a class of species sampling models, for estimating density functions of temporal data. In particular, we introduce species sampling mixture models with temporal dependence. To accommodate temporal dependence, we define dependent species sampling models by modeling random support points and weights through an autoregressive model, and then we construct the mixture models based on the collection of these dependent species sampling models. We propose an algorithm to generate posterior samples and present simulation studies to compare the performance of the proposed models with competitors that are based on Dirichlet process mixture models. We apply our method to the estimation of densities for the price of apartment in Seoul, the closing price in Korea Composite Stock Price Index (KOSPI), and climate variables (daily maximum temperature and precipitation) of around the Korean peninsula. (C) 2018 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:248 / 262
页数:15
相关论文
共 50 条
  • [21] Wasserstein autoregressive models for density time series
    Zhang, Chao
    Kokoszka, Piotr
    Petersen, Alexander
    JOURNAL OF TIME SERIES ANALYSIS, 2022, 43 (01) : 30 - 52
  • [22] Quantile Regression Estimation for Poisson Autoregressive Models
    Sheng, Danshu
    Wang, Dehui
    JOURNAL OF TIME SERIES ANALYSIS, 2025,
  • [23] A Bayesian Variable Selection Method for Spatial Autoregressive Quantile Models
    Zhao, Yuanying
    Xu, Dengke
    MATHEMATICS, 2023, 11 (04)
  • [24] Bayesian identification of double seasonal autoregressive time series models
    Amin, Ayman A.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (08) : 2501 - 2511
  • [25] A new posterior sampler for Bayesian structural vector autoregressive models
    Bruns, Martin
    Piffer, Michele
    QUANTITATIVE ECONOMICS, 2023, 14 (04) : 1221 - 1250
  • [26] Comparison of sampling techniques for Bayesian parameter estimation
    Allison, Rupert
    Dunkley, Joanna
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 437 (04) : 3918 - 3928
  • [27] Fully Bayesian estimation under informative sampling
    Leon-Novelo, Luis G.
    Savitsky, Terrance D.
    ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (01): : 1608 - 1645
  • [28] Hierarchical Species Sampling Models
    Bassetti, Federico
    Casarin, Roberto
    Rossini, Luca
    BAYESIAN ANALYSIS, 2020, 15 (03): : 809 - 838
  • [29] Bayesian estimation for first-order autoregressive model with explanatory variables
    Yang, Kai
    Wang, Dehui
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (22) : 11214 - 11227
  • [30] Bayesian nonparametric functional data analysis through density estimation
    Rodriguez, Abel
    Dunson, David B.
    Gelfand, Alan E.
    BIOMETRIKA, 2009, 96 (01) : 149 - 162