Electrodeposition of crystalline silicon films from silicon dioxide for low-cost photovoltaic applications

被引:74
作者
Zou, Xingli [1 ,2 ,3 ,4 ]
Ji, Li [1 ,5 ,6 ]
Ge, Jianbang [1 ]
Sadoway, Donald R. [7 ]
Yu, Edward T. [5 ]
Bard, Allen J. [1 ]
机构
[1] Univ Texas Austin, Ctr Electrochem, Dept Chem, Austin, TX 78712 USA
[2] Shanghai Univ, State Key Lab Adv Special Steel, Shanghai 200444, Peoples R China
[3] Shanghai Univ, Shanghai Key Lab Adv Ferromet, Shanghai 200444, Peoples R China
[4] Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China
[5] Univ Texas Austin, Microelect Res Ctr, Dept Elect & Comp Engn, Austin, TX 78712 USA
[6] Fudan Univ, Sch Microelect, State Key Lab ASIC & Syst, Shanghai 200433, Peoples R China
[7] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
DIRECT ELECTROLYTIC REDUCTION; ELECTROCHEMICAL REDUCTION; MOLTEN CACL2; DEOXIDATION; PEROVSKITE; JUNCTION; MODULES; SIO2;
D O I
10.1038/s41467-019-13065-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Crystalline-silicon solar cells have dominated the photovoltaics market for the past several decades. One of the long standing challenges is the large contribution of silicon wafer cost to the overall module cost. Here, we demonstrate a simple process for making high-purity solar-grade silicon films directly from silicon dioxide via a one-step electrodeposition process in molten salt for possible photovoltaic applications. High-purity silicon films can be deposited with tunable film thickness and doping type by varying the electrodeposition conditions. These electrodeposited silicon films show about 40 to 50% of photocurrent density of a commercial silicon wafer by photoelectrochemical measurements and the highest power conversion efficiency is 3.1% as a solar cell. Compared to the conventional manufacturing process for solar grade silicon wafer production, this approach greatly reduces the capital cost and energy consumption, providing a promising strategy for low-cost silicon solar cells production.
引用
收藏
页数:7
相关论文
共 35 条
[1]   DC Voltammetry of Electro-deoxidation of Solid Oxides [J].
Abdelkader, A. M. ;
Kilby, K. Tripuraneni ;
Cox, A. ;
Fray, D. J. .
CHEMICAL REVIEWS, 2013, 113 (05) :2863-2886
[2]   12.0% Efficiency on Large-Area, Encapsulated, Multijunction nc-Si:H-Based Solar Cells [J].
Banerjee, Arindam ;
Liu, Frank Shengzhong ;
Beglau, Dave ;
Su, Tining ;
Pietka, Ginger ;
Yang, Jeff ;
Guha, Subhendu .
IEEE JOURNAL OF PHOTOVOLTAICS, 2012, 2 (02) :104-108
[3]   High-Efficiency, Multijunction nc-Si:H-Based Solar Cells at High Deposition Rate [J].
Banerjee, Arindam ;
Su, Tining ;
Beglau, Dave ;
Pietka, Ginger ;
Liu, Frank S. ;
Almutawalli, Salman ;
Yang, Jeff ;
Guha, Subhendu .
IEEE JOURNAL OF PHOTOVOLTAICS, 2012, 2 (02) :99-103
[4]   High-efficiency crystalline silicon solar cells: status and perspectives [J].
Battaglia, Corsin ;
Cuevas, Andres ;
De Wolf, Stefaan .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (05) :1552-1576
[5]   Efficient silicon solar cells with dopant-free asymmetric heterocontacts [J].
Bullock, James ;
Hettick, Mark ;
Geissbuhler, Jonas ;
Ong, Alison J. ;
Allen, Thomas ;
Sutter-Fella, Carolin M. ;
Chen, Teresa ;
Ota, Hiroki ;
Schaler, Ethan W. ;
De Wolf, Stefaan ;
Ballif, Christophe ;
Cuevas, Andres ;
Javey, Ali .
NATURE ENERGY, 2016, 1
[6]   Electrodeposition of Crystalline and Photoactive Silicon Directly from Silicon Dioxide Nanoparticles in Molten CaCl2 [J].
Cho, Sung Ki ;
Fan, Fu-Ren F. ;
Bard, Allen J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (51) :12740-12744
[7]   Sensitivity of state-of-the-art and high efficiency crystalline silicon solar cells to metal impurities [J].
Coletti, Gianluca .
PROGRESS IN PHOTOVOLTAICS, 2013, 21 (05) :1163-1170
[8]   ELECTRODEPOSITION OF SOLAR SILICON [J].
ELWELL, D ;
FEIGELSON, RS .
SOLAR ENERGY MATERIALS, 1982, 6 (02) :123-145
[9]   REVIEWS OF APPLIED ELECTROCHEMISTRY .18. ELECTROLYTIC PRODUCTION OF SILICON [J].
ELWELL, D ;
RAO, GM .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1988, 18 (01) :15-22
[10]   Silicon photovoltaic modules: A brief history of the first 50 years [J].
Green, MA .
PROGRESS IN PHOTOVOLTAICS, 2005, 13 (05) :447-455