Polynomial Solutions of Equivariant Polynomial Abel Differential Equations

被引:4
|
作者
Llibre, Jaume [1 ]
Valls, Claudia [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[2] Univ Lisbon, Inst Super Tecn, Dept Matemat, Ave Rovisco Pais 1049-001, Lisbon, Portugal
关键词
Polynomial Abel Equations; Equivariant Polynomial Equation; Polynomial Solutions; LIMIT-CYCLES; NUMBER;
D O I
10.1515/ans-2017-6043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let a(x) be non-constant and let b(j)(x), for j = 0, 1, 2, 3, be real or complex polynomials in the variable x. Then the real or complex equivariant polynomial Abel differential equation a(x)(y) over dot = b(1)(x) y + b(3)(x) y(3), with b(3)(x) not equal 0, and the real or complex polynomial equivariant polynomial Abel differential equation of the second kind a(x)y(y) over dot = b(0)(x) + b(2)(x) y(2), with b(2)(x) not equal 0, have at most 7 polynomial solutions. Moreover, there exist equations of this type having this maximum number of polynomial solutions.
引用
收藏
页码:537 / 542
页数:6
相关论文
共 50 条