Trajectory Tracking of a 2-DOF Helicopter System Using Canonical Normal Form

被引:1
作者
Bououden, Soraya [1 ]
Brahmi, Brahim [2 ]
Rahman, Mohammad Habibur [3 ]
机构
[1] Ferhat Abas Setif 1 Univ, Fac Sci, Setif 19000, Algeria
[2] McGill Univ, Mech Engn Dept, Montreal, PQ, Canada
[3] Univ Wisconsin, Mech Engn Dept, Milwaukee, WI 53201 USA
来源
2021 18TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD) | 2021年
关键词
Flatness; Nonlinear systems; Normal Form; 2DOF; FLATNESS;
D O I
10.1109/SSD52085.2021.9429360
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper deals with canonical normal form approach for trajectory tracking control of a two degree-of-freedom helicopter system. The main objective is to stabilize beam of the helicopter with respect to pitch and yaw angles. Sufficient geometrical conditions are given for a class of non-linear dynamical systems to transform the studied nonlinear systems into a triangular normal form and determine the flat outputs. Using this form two controllers are designed to control the position of the yaw and the pitch angles of the Helicopter. Simulation results are given to illustrate the effectiveness of the proposed control scheme.
引用
收藏
页码:765 / 770
页数:6
相关论文
共 30 条
[1]  
Arasl A. C., 2014, 2014 IEEEASME INT C
[2]   A triangular canonical form for a class of 0-flat nonlinear systems [J].
Bououden, S. ;
Boutat, D. ;
Zheng, G. ;
Barbot, J-P ;
Kratz, F. .
INTERNATIONAL JOURNAL OF CONTROL, 2011, 84 (02) :261-269
[3]  
Chen F., 2015, IEEE T IND ELECTRON, V62
[4]   Adaptive variable structure fuzzy neural identification and control for a class of MIMO nonlinear system [J].
Dong, Xiucheng ;
Zhao, Yunyuan ;
Karimi, Hamid Reza ;
Shi, Peng .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2013, 350 (05) :1221-1247
[5]   Trajectory planning of differentially flat systems with dynamics and inequalities [J].
Faiz, N ;
Agrawal, SK ;
Murray, RM .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2001, 24 (02) :219-227
[6]  
Feedback Co, 1998, TWIN ROTOR MIMO SYST
[7]   FLATNESS AND DEFECT OF NONLINEAR-SYSTEMS - INTRODUCTORY THEORY AND EXAMPLES [J].
FLIESS, M ;
LEVINE, J ;
MARTIN, P ;
ROUCHON, P .
INTERNATIONAL JOURNAL OF CONTROL, 1995, 61 (06) :1327-1361
[8]  
Fliess M., 1992, Proceedings of IFAC Symposium on Nonlinear Control Systems Design, Bordeaux, France, P159
[9]   Decentralized discrete-time neural control for a Quanser 2-DOF helicopter [J].
Hernandez-Gonzalez, M. ;
Alanis, A. Y. ;
Hernandez-Vargas, E. A. .
APPLIED SOFT COMPUTING, 2012, 12 (08) :2462-2469
[10]  
Isidori A, 1995, NONLINEAR CONTROL SYSTEMS DESIGN 1995, VOLS 1 AND 2, P87