Realistic spatial sampling for MEG beamformer images

被引:78
作者
Barnes, GR [1 ]
Hillebrand, A [1 ]
Fawcett, IP [1 ]
Singh, KD [1 ]
机构
[1] Aston Univ, Wellcome Trust MEG Studies, Neurosci Res Inst, Birmingham B4 7ET, W Midlands, England
基金
英国惠康基金;
关键词
magnetoencephalography; synthetic aperture magnetometry; SAM; FWHM; spatial resolution; region-of-interest analysis;
D O I
10.1002/hbm.20047
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The spatial resolution achievable using magnetoencephalography (MEG) beamformer techniques is inhomogeneous across the brain and is related directly to the amplitude of the underlying electrical sources [Barnes and Hillebrand, Hum Brain Mapp 2003;18:1-12; Gross et al., Proc Natl Acad Sci USA 2001;98:694-699; Van Veen et al., IEEE Trans Biomed Eng 1997;44:867-860; Vrba and Robinson, Proc 12th Int Conf Biomagn 2001]. We set out to examine what an adequate level of spatial sampling of the brain volume is in a realistic situation, and what implications these inhomogeneities have for region-of-interest analysis. As a basis for these calculations, we used a simple retinotopic mapping experiment where stimuli were 17-Hz reversing gratings presented in either left or right visual hemifield. Beamformer weights were calculated based on the covariance of the MEG data in a 0-80 Hz bandwidth. We then estimated volumetric full-width half-maximum (FWHM) maps at a range of sampling levels. We show that approximately 10% of the 1 mm cubic voxels in the occipital volume have a FWHM smoothness of <5 mm, and 80% <10 mm in three subjects. This was despite relatively low mean signal-to-noise ratios (SNR) values of 1.5. We demonstrate how visualization of these FWHM maps can be used to avoid some of the pitfalls implicit in beamformer region-of-interest analysis. (C) 2004 Wiley-Liss, Inc.
引用
收藏
页码:120 / 127
页数:8
相关论文
共 31 条
[1]   Co-registration of magnetoencephalography with magnetic resonance imaging using bite-bar-based fiducials and surface-matching [J].
Adjamian, P ;
Barnes, GR ;
Hillebrand, A ;
Holliday, IE ;
Singh, KD ;
Furlong, PL ;
Harrington, E ;
Barclay, CW ;
Route, PJG .
CLINICAL NEUROPHYSIOLOGY, 2004, 115 (03) :691-698
[2]   Statistical flattening of MEG beamformer images [J].
Barnes, GR ;
Hillebrand, A .
HUMAN BRAIN MAPPING, 2003, 18 (01) :1-12
[3]  
CUFFIN BN, 1979, ELECTROEN CLIN NEURO, V47, P132, DOI 10.1016/0013-4694(79)90215-3
[4]   The temporal frequency tuning of human visual cortex investigated using synthetic aperture magnetometry [J].
Fawcett, IP ;
Barnes, GR ;
Hillebrand, A ;
Singh, KD .
NEUROIMAGE, 2004, 21 (04) :1542-1553
[5]   Detecting activations in PET and fMRI: Levels of inference and power [J].
Friston, KJ ;
Holmes, A ;
Poline, JB ;
Price, CJ ;
Frith, CD .
NEUROIMAGE, 1996, 4 (03) :223-235
[6]   Localization of human somatosensory cortex using spatially filtered magnetoencephalography [J].
Gaetz, WC ;
Cheyne, DO .
NEUROSCIENCE LETTERS, 2003, 340 (03) :161-164
[7]   Properties of MEG tomographic maps obtained with spatial filtering [J].
Gross, J ;
Timmermann, L ;
Kujala, J ;
Salmelin, R ;
Schnitzler, A .
NEUROIMAGE, 2003, 19 (04) :1329-1336
[8]   Dynamic imaging of coherent sources:: Studying neural interactions in the human brain [J].
Gross, J ;
Kujala, J ;
Hämäläinen, M ;
Timmermann, L ;
Schnitzler, A ;
Salmelin, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (02) :694-699
[9]   Dynamic activation of distinct cytoarchitectonic areas of the human S1 cortex after median nerve stimulation [J].
Hashimoto, I ;
Kimura, T ;
Iguchi, Y ;
Takino, T ;
Sekihara, K .
NEUROREPORT, 2001, 12 (09) :1891-1897
[10]   The use of anatomical constraints with MEG beamformers [J].
Hillebrand, A ;
Barnes, GR .
NEUROIMAGE, 2003, 20 (04) :2302-2313