Spatial Positioning and Operating Parameters of a Rotary Bell Sprayer: 3D Mapping of Droplet Size Distributions

被引:21
作者
Ahmad, Adnan Darwish [1 ]
Singh, Binit B. [1 ]
Doerre, Mark [1 ]
Abubaker, Ahmad M. [1 ]
Arabghahestani, Masoud [1 ]
Salaimeh, Ahmad A. [1 ]
Akafuah, Nelson K. [1 ]
机构
[1] Univ Kentucky, Inst Res Technol Dev IR4TD, Lexington, KY 40506 USA
关键词
atomization; laser diffraction; rotary bell; droplet size distribution; spray; paint appearance; PAINTING PROCESS; FLOW-RATE; SPEED; ATOMIZATION; SIMULATION; VISUALIZATION; EVAPORATION; ATOMIZERS; TRANSPORT;
D O I
10.3390/fluids4030165
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this study, we evaluated the fundamental physical behavior during droplet formation and flow from a rotary bell spray in the absence of an electrostatic field. The impact of a wide range of operating parameters of the rotary bell sprayer, such as flow rates, rotational speeds, and spatial positioning, on droplet sizes and size distributions using a three-dimensional (3-D) mapping was studied. The results showed that increasing the rotational speed caused the Sauter mean diameter of the droplets to decrease while increasing flow rate increased the droplet sizes. The rotational speed effect, however, was dominant compared to the effect of flow rate. An increase in droplet size radially away from the cup was noted in the vicinity of the cup, nevertheless, as the lateral distances from the cup and rotational speed were increased, the droplet sizes within the flow field became more uniform. This result is of importance for painting industries, which are looking for optimal target distances for uniform painting appearance. Furthermore, the theoretical formulation was validated with experimental data, which provides a wider range of applicability in terms of environment and parameters that could be tested. This work also provides an abundance of measurements, which can serve as a database for the validation of future droplet disintegration simulations.
引用
收藏
页数:19
相关论文
共 36 条
[1]   A new approach to the determination of the cathodic protection period in zinc-rich paints [J].
Abreu, CM ;
Izquierdo, M ;
Merino, P ;
Nóvoa, XR ;
Pérez, C .
CORROSION, 1999, 55 (12) :1173-1181
[2]   Schlieren Visualization of Shaping Air during Operation of an Electrostatic Rotary Bell Sprayer: Impact of Shaping Air on Droplet Atomization and Transport [J].
Ahmad, Adnan Darwish ;
Abubaker, Ahmad M. ;
Salaimeh, Ahmad A. ;
Akafuah, Nelson K. .
COATINGS, 2018, 8 (08)
[3]  
Akafuah N.K., 2009, THESIS
[4]   Evolution of the Automotive Body Coating Process-A Review [J].
Akafuah, Nelson K. ;
Poozesh, Sadegh ;
Salaimeh, Ahmad ;
Patrick, Gabriela ;
Lawler, Kevin ;
Saito, Kozo .
COATINGS, 2016, 6 (02)
[5]   Infrared thermography-based visualization of droplet transport in liquid sprays [J].
Akafuah, Nelson K. ;
Salazar, Abraham J. ;
Saito, Kozo .
INFRARED PHYSICS & TECHNOLOGY, 2010, 53 (03) :218-226
[6]   Modeling drop size distributions [J].
Babinsky, E ;
Sojka, PE .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2002, 28 (04) :303-329
[7]  
BAILEY AG, 1974, SCI PROG, V61, P555
[8]  
Bauckhage K., 1994, P 6 INT C LIQ AT SPR
[10]   A discrete droplet transport model for predicting spray coating patterns of an electrostatic rotary atomizer [J].
Colbert, SA ;
Cairncross, RA .
JOURNAL OF ELECTROSTATICS, 2006, 64 (3-4) :234-246