Wegner Estimate and Level Repulsion for Wigner Random Matrices

被引:100
作者
Erdos, Laszlo [2 ]
Schlein, Benjamin [1 ]
Yau, Horng-Tzer [3 ]
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
[2] Univ Munich, Inst Math, D-80333 Munich, Germany
[3] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
TAIL PROBABILITIES; QUADRATIC-FORMS; SEMICIRCLE LAW; UNIVERSALITY; DELOCALIZATION;
D O I
10.1093/imrn/rnp136
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider N x N Hermitian random matrices with independent identically distributed entries (Wigner matrices). The matrices are normalized so that the average spacing between consecutive eigenvalues is of order 1/ N. Under suitable assumptions on the distribution of the single matrix element, we first prove that, away from the spectral edges, the empirical density of eigenvalues concentrates around the Wigner semicircle law on energy scales eta N-1. This result establishes the semicircle law on the optimal scale and it removes a logarithmic factor from our previous result [6]. We then show a Wegner estimate, i.e., that the averaged density of states is bounded. Finally, we prove that the eigenvalues of a Wigner matrix repel each other, in agreement with the universality conjecture.
引用
收藏
页码:436 / 479
页数:44
相关论文
共 16 条
[1]  
ANDERSON GW, LECT NOTES IN PRESS
[2]  
[Anonymous], 2000, ORTHOGONAL POLYNOMIA
[3]  
BAI ZD, 2002, INT MATH J, V1, P65
[4]   Exponential integrability and transportation cost related to logarithmic sobolev inequalities [J].
Bobkov, SG ;
Götze, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 163 (01) :1-28
[5]   Local Semicircle Law and Complete Delocalization for Wigner Random Matrices [J].
Erdoes, Laszlo ;
Schlein, Benjamin ;
Yau, Horng-Tzer .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 287 (02) :641-655
[6]   SEMICIRCLE LAW ON SHORT SCALES AND DELOCALIZATION OF EIGENVECTORS FOR WIGNER RANDOM MATRICES [J].
Erdos, Laszlo ;
Schlein, Benjamin ;
Yau, Horng-Tzer .
ANNALS OF PROBABILITY, 2009, 37 (03) :815-852
[7]   CONCENTRATION OF THE SPECTRAL MEASURE FOR LARGE MATRICES [J].
Guionnet, A. ;
Zeitouni, O. .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2000, 5 :119-136
[8]   BOUND ON TAIL PROBABILITIES FOR QUADRATIC FORMS IN INDEPENDENT RANDOM VARIABLES [J].
HANSON, DL ;
WRIGHT, FT .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (03) :1079-&
[9]   Universality of the local spacing distribution in certain ensembles of hermitian Wigner matrices [J].
Johansson, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 215 (03) :683-705
[10]  
Khorunzhy A., 1997, RANDOM OPER STOCHAST, V5, P147, DOI DOI 10.1515/ROSE.1997.5.2.147