On Fano Manifolds with a Birational Contraction Sending a Divisor to a Curve

被引:12
作者
Casagrande, C. [1 ]
机构
[1] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
关键词
BLOW-UP; CLASSIFICATION; 3-FOLDS; VARIETIES; POINT;
D O I
10.1307/mmj/1260475701
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:783 / 805
页数:23
相关论文
共 23 条
[1]   On manifolds whose tangent bundle contains an ample subbundle [J].
Andreatta, M ;
Wisniewski, JA .
INVENTIONES MATHEMATICAE, 2001, 146 (01) :209-217
[2]  
ANDREATTA M, 1997, P S PURE MATH, V62, P153
[3]  
[Anonymous], 1996, ERGEB MATH GRENZGEB
[4]  
[Anonymous], 2013, Cambridge Tracts in Mathematics
[5]  
Batyrev V. V., 1999, Journal of Mathematical Sciences, V94, P1021
[6]  
BIRKAR C, 2006, ARXIVMATH0610203
[7]   Toric varieties whose blow-up at a point is Fano [J].
Bonavero, L .
TOHOKU MATHEMATICAL JOURNAL, 2002, 54 (04) :593-597
[8]   Complex manifolds whose blow-up at a point is Fano [J].
Bonavero, L ;
Campana, F ;
Wisniewski, JA .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (06) :463-468
[9]   On covering and quasi-unsplit families of curves [J].
Bonavero, Laurent ;
Casagrande, Cinzia ;
Druel, Stephane .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2007, 9 (01) :45-57
[10]   Toric Fano varieties and birational morphisms [J].
Casagrande, C .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2003, 2003 (27) :1473-1505