On the variational principle for the topological entropy of certain non-compact sets

被引:121
作者
Takens, F
Verbitskiy, E
机构
[1] Univ Groningen, Dept Math, NL-9700 AV Groningen, Netherlands
[2] Tech Univ Eindhoven, Eurandom, NL-5600 MB Eindhoven, Netherlands
关键词
D O I
10.1017/S0143385702000913
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a continuous transformation f of a compact metric space (X, d) and any continuous function psi on X we consider sets of the form [GRAPHICS] For transformations satisfying the specification property we prove the following Variational Principle [GRAPHICS] where h(top)(f,) is the topological entropy of non-compact sets. Using this result we are able to obtain a complete description of the multifractal spectrum for Lyapunov exponents of the so-called Manneville-Pomeau map, which is an interval map with an indifferent fixed point. We also consider multi-dimensional multiftactal spectra and establish a contraction principle.
引用
收藏
页码:317 / 348
页数:32
相关论文
共 25 条
[1]   Variational principles and mixed multifractal spectra [J].
Barreira, L ;
Saussol, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (10) :3919-3944
[2]  
BLOKH AM, 1983, USP MAT NAUK, V38, P179
[3]   TOPOLOGICAL ENTROPY FOR NONCOMPACT SETS [J].
BOWEN, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 184 (OCT) :125-136
[4]  
Denker M., 1976, LECT NOTES MATH, V527
[5]  
Falconer K., 1990, MATH FDN APPL, V46, P886, DOI 10.2307/2532125
[6]   On the distribution of long-term time averages on symbolic space [J].
Fan, AH ;
Feng, DJ .
JOURNAL OF STATISTICAL PHYSICS, 2000, 99 (3-4) :813-856
[7]   Rotation and entropy [J].
Geller, W ;
Misiurewicz, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (07) :2927-2948
[9]   Rotation, entropy, and equilibrium states [J].
Jenkinson, O .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (09) :3713-3739
[10]  
Katok A., 1980, Publ. Math. Inst. Hautes Etudes Sci., V51, P137, DOI 10.1007/BF02684777