Kinergy: Creating 3D Printable Motion using Embedded Kinetic Energy

被引:6
|
作者
He, Liang [1 ]
Su, Xia [1 ]
Peng, Huaishu [2 ]
Lipton, Jefrey I. [3 ]
Froehlich, Jon E. [1 ]
机构
[1] Univ Washington, Paul G Allen Sch Comp Sci & Engn, Seattle, WA 98195 USA
[2] Univ Maryland, Comp Sci, College Pk, MD USA
[3] Univ Washington, Mech Engn, Seattle, WA USA
关键词
Digital fabrication; 3D printing; kinetic objects; spring; gear; computer-aided design; mechanical lock; parametric design; DESIGN;
D O I
10.1145/3526113.3545636
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We present Kinergy-an interactive design tool for creating self-propelled motion by harnessing the energy stored in 3D printable springs. To produce controllable output motions, we introduce 3D printable kinetic units, a set of parameterizable designs that encapsulate 3D printable springs, compliant locks, and transmission mechanisms for three non-periodic motions-instant translation, instant rotation, continuous translation-and four periodic motions-continuous rotation, reciprocation, oscillation, intermittent rotation. Kinergy allows the user to create motion-enabled 3D models by embedding kinetic units, customize output motion characteristics by parameterizing embedded springs and kinematic elements, control energy by operating the specialized lock, and preview the resulting motion in an interactive environment. We demonstrate the potential of our techniques via example applications from spring-loaded cars to kinetic sculptures and close with a discussion of key challenges such as geometric constraints.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] 3D Printable Embedded RF Connectors
    Reese, Malcolm S.
    Heilman, Grant D.
    Doyle, Derek
    Christodoulou, Christos G.
    2020 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND NORTH AMERICAN RADIO SCIENCE MEETING, 2020, : 1525 - 1526
  • [2] Printable 3D Carbon Nanofiber Networks with Embedded Metal Nanocatalysts
    Simsek, Marcel
    Hoecherl, Kilian
    Schlosser, Marc
    Baeumner, Antje J.
    Wongkaew, Nongnoot
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (35) : 39533 - 39540
  • [3] Using motion to illustrate static 3D shape - Kinetic visualization
    Lum, EB
    Stompel, A
    Ma, KL
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2003, 9 (02) : 115 - 126
  • [4] Printable 3D Trees
    Bo, Z.
    Lu, L.
    Sharf, A.
    Xia, Y.
    Deussen, O.
    Chen, B.
    COMPUTER GRAPHICS FORUM, 2017, 36 (07) : 29 - 40
  • [5] 3D printable geomaterials
    Hanaor, D. A. H.
    Gan, Y.
    Revay, M.
    Airey, D. W.
    Einav, I.
    GEOTECHNIQUE, 2016, 66 (04): : 323 - 332
  • [6] Image sequence coding using Motion Embedded 3D Vector Quantization
    Choi, HKC
    Chan, CK
    ISSPA 96 - FOURTH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, PROCEEDINGS, VOLS 1 AND 2, 1996, : 37 - 40
  • [7] Development of Highly Energy Densified Ink for 3D Printable Batteries
    Park, Sujin
    Nenov, Nenko S.
    Ramachandran, Arathi
    Chung, Kyeongwoon
    Hoon Lee, Sea
    Yoo, Jungjoon
    Yeo, Jeong-gu
    Bae, Chang-Jun
    ENERGY TECHNOLOGY, 2018, 6 (10) : 2058 - 2064
  • [8] Energy simulation and life cycle assessment of a 3D printable building
    Tari, Mohammadreza Khalili
    Faraji, Amir Reza
    Aslani, Alireza
    Zahedi, Rahim
    CLEANER MATERIALS, 2023, 7
  • [9] 3D Printable Thermoplastic Polyurethane Energy Efficient Passive Foot
    Ahmed, Muhammad Hassaan
    Jamshid, Asharib
    Amjad, Usman
    Azhar, Aashir
    Hassan, Muhammad Zawar ul
    Tiwana, Mohsin Islam
    Qureshi, Waqar Shahid
    Alanazi, Eisa
    3D PRINTING AND ADDITIVE MANUFACTURING, 2022, 9 (06) : 557 - 565
  • [10] Design of 3D printable airless tyres using NTopology
    Jafferson, J. M.
    Sharma, Hemkar
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 1147 - 1160