Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited

被引:534
作者
Thomas, Cibu [1 ,2 ]
Ye, Frank Q. [3 ,4 ,5 ]
Irfanoglu, M. Okan [1 ,2 ]
Modi, Pooja [1 ]
Saleem, Kadharbatcha S. [6 ]
Leopold, David A. [3 ,4 ,5 ]
Pierpaoli, Carlo [1 ,2 ]
机构
[1] Eunice Kennedy Shriver Natl Inst Child Hlth & Hum, Program Pediat Imaging & Tissue Sci, Bethesda, MD 20892 USA
[2] Uniformed Serv Univ Hlth Sci, Ctr Neurosci & Regenerat Med, Bethesda, MD 20814 USA
[3] NINDS, Neurophysiol Imaging Facil, NIMH, Bethesda, MD 20892 USA
[4] NEI, Bethesda, MD 20892 USA
[5] NIMH, Sect Cognit Neurophysiol & Imaging, Neuropsychol Lab, Bethesda, MD 20892 USA
[6] NIMH, Sect Cognit Neurosci, Neuropsychol Lab, Bethesda, MD 20892 USA
关键词
diffusion MRI; tractography; white matter; tracer; validation; WHITE-MATTER; FIBER PATHWAYS; TENSOR; RESOLUTION; CORTEX; TRACKING; TRACTS; SUBDIVISIONS; ARCHITECTURE; ORIENTATION;
D O I
10.1073/pnas.1405672111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Tractography based on diffusion-weighted MRI (DWI) is widely used for mapping the structural connections of the human brain. Its accuracy is known to be limited by technical factors affecting in vivo data acquisition, such as noise, artifacts, and data undersampling resulting from scan time constraints. It generally is assumed that improvements in data quality and implementation of sophisticated tractography methods will lead to increasingly accurate maps of human anatomical connections. However, assessing the anatomical accuracy of DWI tractography is difficult because of the lack of independent knowledge of the true anatomical connections in humans. Here we investigate the future prospects of DWI-based connectional imaging by applying advanced tractography methods to an ex vivo DWI dataset of the macaque brain. The results of different tractography methods were compared with maps of known axonal projections from previous tracer studies in the macaque. Despite the exceptional quality of the DWI data, none of the methods demonstrated high anatomical accuracy. The methods that showed the highest sensitivity showed the lowest specificity, and vice versa. Additionally, anatomical accuracy was highly dependent upon parameters of the tractography algorithm, with different optimal values for mapping different pathways. These results suggest that there is an inherent limitation in determining long-range anatomical projections based on voxel-averaged estimates of local fiber orientation obtained from DWI data that is unlikely to be overcome by improvements in data acquisition and analysis alone.
引用
收藏
页码:16574 / 16579
页数:6
相关论文
共 50 条
[41]   Current and Future Challenges of Functional MRI and Diffusion Tractography in the Surgical Setting: From Eloquent Brain Mapping to Neural Plasticity [J].
Morales, Humberto .
SEMINARS IN ULTRASOUND CT AND MRI, 2021, 42 (05) :474-489
[42]   Effects of image distortions originating from susceptibility variations and concomitant fields on diffusion MRI tractography results [J].
Irfanoglu, M. Okan ;
Walker, Lindsay ;
Sarlls, Joelle ;
Marenco, Stefano ;
Pierpaoli, Carlo .
NEUROIMAGE, 2012, 61 (01) :275-288
[43]   Anatomical accuracy of standard-practice tractography algorithms in the motor system - A histological validation in the squirrel monkey brain [J].
Schilling, Kurt G. ;
Gao, Yurui ;
Stepniewska, Iwona ;
Janve, Vaibhav ;
Landman, Bennett A. ;
Anderson, Adam W. .
MAGNETIC RESONANCE IMAGING, 2019, 55 :7-25
[44]   Diffantom: Whole-Brain Diffusion MRI Phantoms Derived from Real Datasets of the Human Connectome Project [J].
Esteban, Oscar ;
Caruyer, Emmanuel ;
Daducci, Alessandro ;
Bach-Cuadra, Meritxell ;
Ledesma-Carbayo, Maria J. ;
Santos, Andres .
FRONTIERS IN NEUROINFORMATICS, 2016, 10
[45]   Considerations and recommendations from the ISMRM Diffusion Study Group for preclinical diffusion MRI: Part 3-Ex vivo imaging: Data processing, comparisons with microscopy, and tractography [J].
Schilling, Kurt G. ;
Howard, Amy F. D. ;
Grussu, Francesco ;
Ianus, Andrada ;
Hansen, Brian ;
Barrett, Rachel L. C. ;
Aggarwal, Manisha ;
Michielse, Stijn ;
Nasrallah, Fatima ;
Syeda, Warda ;
Wang, Nian ;
Veraart, Jelle ;
Roebroeck, Alard ;
Bagdasarian, Andrew F. ;
Eichner, Cornelius ;
Sepehrband, Farshid ;
Zimmermann, Jan ;
Soustelle, Lucas ;
Bowman, Christien ;
Tendler, Benjamin C. ;
Hertanu, Andreea ;
Jeurissen, Ben ;
Verhoye, Marleen ;
Frydman, Lucio ;
van de Looij, Yohan ;
Hike, David ;
Dunn, Jeff F. ;
Miller, Karla ;
Landman, Bennett A. ;
Shemesh, Noam ;
Anderson, Adam ;
Mckinnon, Emilie ;
Farquharson, Shawna ;
Dell'Acqua, Flavio ;
Pierpaoli, Carlo ;
Drobnjak, Ivana ;
Leemans, Alexander ;
Harkins, Kevin D. ;
Descoteaux, Maxime ;
Xu, Duan ;
Huang, Hao ;
Santin, Mathieu D. ;
Grant, Samuel C. ;
Obenaus, Andre ;
Kim, Gene S. ;
Wu, Dan ;
Le Bihan, Denis ;
Blackband, Stephen J. ;
Ciobanu, Luisa ;
Fieremans, Els .
MAGNETIC RESONANCE IN MEDICINE, 2025, 93 (06) :2561-2582
[46]   Diffusion MRI microstructure models with in vivo human brain Connectome data: results from a multi-group comparison [J].
Ferizi, Uran ;
Scherrer, Benoit ;
Schneider, Torben ;
Alipoor, Mohammad ;
Eufracio, Odin ;
Fick, Rutger H. J. ;
Deriche, Rachid ;
Nilsson, Markus ;
Loya-Olivas, Ana K. ;
Rivera, Mariano ;
Poot, Dirk H. J. ;
Ramirez-Manzanares, Alonso ;
Marroquin, Jose L. ;
Rokem, Ariel ;
Potter, Christian ;
Dougherty, Robert F. ;
Sakaie, Ken ;
Wheeler-Kingshott, Claudia ;
Warfield, Simon K. ;
Witzel, Thomas ;
Wald, Lawrence L. ;
Raya, Jose G. ;
Alexander, Daniel C. .
NMR IN BIOMEDICINE, 2017, 30 (09)
[47]   BundleCleaner: Unsupervised Denoising and Subsampling of Diffusion MRI-Derived Tractography Data [J].
Feng, Yixue ;
Chandio, Bramsh Q. ;
Villalon-Reina, Julio E. ;
Thomopoulos, Sophia I. ;
Joshi, Himanshu ;
Nair, Gauthami ;
Joshi, Anand A. ;
Venkatasubramanian, Ganesan ;
John, John P. ;
Thompson, Paul M. .
COMPUTATIONAL DIFFUSION MRI, CDMRI 2023, 2023, 14328 :152-164
[48]   BOOSTING CLASSIFICATION ACCURACY OF DIFFUSION MRI DERIVED BRAIN NETWORKS FOR THE SUBTYPES OF MILD COGNITIVE IMPAIRMENT USING HIGHER ORDER SINGULAR VALUE DECOMPOSITION [J].
Zhan, L. ;
Liu, Y. ;
Zhou, J. ;
Ye, J. ;
Thompson, P. M. .
2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), 2015, :131-135
[49]   Anatomical bases of fast parietal grasp control in humans: A diffusion-MRI tractography study [J].
Richard, Nathalie ;
Desmurget, Michel ;
Teillac, Achille ;
Beuriat, Pierre-Aurelien ;
Bardi, Lara ;
Coude, Gino ;
Szathmari, Alexandru ;
Mottolese, Carmine ;
Sirigu, Angela ;
Hiba, Bassem .
NEUROIMAGE, 2021, 235
[50]   An algorithm to estimate anatomical connectivity between brain regions using diffusion MRI [J].
Campanella, Martina ;
Molinari, Elisa ;
Baraldi, Patrizia ;
Nocetti, Luca ;
Porro, Carlo A. ;
Alexander, Daniel C. .
MAGNETIC RESONANCE IMAGING, 2013, 31 (03) :353-358