Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited

被引:518
|
作者
Thomas, Cibu [1 ,2 ]
Ye, Frank Q. [3 ,4 ,5 ]
Irfanoglu, M. Okan [1 ,2 ]
Modi, Pooja [1 ]
Saleem, Kadharbatcha S. [6 ]
Leopold, David A. [3 ,4 ,5 ]
Pierpaoli, Carlo [1 ,2 ]
机构
[1] Eunice Kennedy Shriver Natl Inst Child Hlth & Hum, Program Pediat Imaging & Tissue Sci, Bethesda, MD 20892 USA
[2] Uniformed Serv Univ Hlth Sci, Ctr Neurosci & Regenerat Med, Bethesda, MD 20814 USA
[3] NINDS, Neurophysiol Imaging Facil, NIMH, Bethesda, MD 20892 USA
[4] NEI, Bethesda, MD 20892 USA
[5] NIMH, Sect Cognit Neurophysiol & Imaging, Neuropsychol Lab, Bethesda, MD 20892 USA
[6] NIMH, Sect Cognit Neurosci, Neuropsychol Lab, Bethesda, MD 20892 USA
关键词
diffusion MRI; tractography; white matter; tracer; validation; WHITE-MATTER; FIBER PATHWAYS; TENSOR; RESOLUTION; CORTEX; TRACKING; TRACTS; SUBDIVISIONS; ARCHITECTURE; ORIENTATION;
D O I
10.1073/pnas.1405672111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Tractography based on diffusion-weighted MRI (DWI) is widely used for mapping the structural connections of the human brain. Its accuracy is known to be limited by technical factors affecting in vivo data acquisition, such as noise, artifacts, and data undersampling resulting from scan time constraints. It generally is assumed that improvements in data quality and implementation of sophisticated tractography methods will lead to increasingly accurate maps of human anatomical connections. However, assessing the anatomical accuracy of DWI tractography is difficult because of the lack of independent knowledge of the true anatomical connections in humans. Here we investigate the future prospects of DWI-based connectional imaging by applying advanced tractography methods to an ex vivo DWI dataset of the macaque brain. The results of different tractography methods were compared with maps of known axonal projections from previous tracer studies in the macaque. Despite the exceptional quality of the DWI data, none of the methods demonstrated high anatomical accuracy. The methods that showed the highest sensitivity showed the lowest specificity, and vice versa. Additionally, anatomical accuracy was highly dependent upon parameters of the tractography algorithm, with different optimal values for mapping different pathways. These results suggest that there is an inherent limitation in determining long-range anatomical projections based on voxel-averaged estimates of local fiber orientation obtained from DWI data that is unlikely to be overcome by improvements in data acquisition and analysis alone.
引用
收藏
页码:16574 / 16579
页数:6
相关论文
共 50 条
  • [1] Learning Anatomical Segmentations for Tractography from Diffusion MRI
    Ewert, Christian
    Kugler, David
    Yendiki, Anastasia
    Reuter, Martin
    COMPUTATIONAL DIFFUSION MRI, 2021, : 81 - 93
  • [2] Diffusion MRI fiber tractography of the brain
    Jeurissen, Ben
    Descoteaux, Maxime
    Mori, Susumu
    Leemans, Alexander
    NMR IN BIOMEDICINE, 2019, 32 (04)
  • [3] The visual pathways, from anatomical MRI to physiological with (f)MRI and tractography with diffusion tensor MRI (DTMRI)
    Cabanis, EA
    Iba-Zizen, MT
    Nguyen, TH
    Bellinger, L
    Stievenart, JL
    Yoshida, M
    Hamard, H
    BULLETIN DE L ACADEMIE NATIONALE DE MEDECINE, 2004, 188 (07): : 1153 - 1169
  • [4] Characterizing brain anatomical connections using diffusion weighted MRI and graph theory
    Iturria-Medina, Y.
    Canales-Rodriguez, E. J.
    Melie-Garcia, L.
    Valdes-Hernandez, P. A.
    Martinez-Montes, E.
    Aleman-Gomez, Y.
    Sanchez-Bornot, J. M.
    NEUROIMAGE, 2007, 36 (03) : 645 - 660
  • [5] Limits to anatomical accuracy of diffusion tractography using modern approaches
    Schilling, Kurt G.
    Nath, Vishwesh
    Hansen, Colin
    Parvathaneni, Prasanna
    Blaber, Justin
    Gao, Yurui
    Neher, Peter
    Aydogan, Dogu Baran
    Shi, Yonggang
    Ocampo-Pineda, Mario
    Schiavi, Simona
    Daducci, Alessandro
    Girard, Gabriel
    Barakovic, Muhamed
    Rafael-Patino, Jonathan
    Romascano, David
    Rensonnet, Gaetan
    Pizzolato, Marco
    Bates, Alice
    Fischi, Elda
    Thiran, Jean-Philippe
    Canales-Rodriguez, Erick J.
    Huang, Chao
    Zhu, Hongtu
    Zhong, Liming
    Cabeen, Ryan
    Toga, Arthur W.
    Rheault, Francois
    Theaud, Guillaume
    Houde, Jean-Christophe
    Sidhu, Jasmeen
    Chamberland, Maxime
    Westin, Carl-Fredrik
    Dyrby, Tim B.
    Verma, Ragini
    Rathi, Yogesh
    Irfanoglu, M. Okan
    Thomas, Cibu
    Pierpaoli, Carlo
    Descoteaux, Maxime
    Anderson, Adam W.
    Landman, Bennett A.
    NEUROIMAGE, 2019, 185 : 1 - 11
  • [6] The visual pathways, from anatomical MRI to physiological with (f)MRI and tractography with diffusion tensor MRI (DTMRI) -: Discussion
    Monod-Broca, P
    Nordmann, R
    Rondot, P
    Crépin, G
    BULLETIN DE L ACADEMIE NATIONALE DE MEDECINE, 2004, 188 (07): : 1170 - 1172
  • [7] Diffusion MRI Connections in the Octopus Brain
    Jacobs, Russell E.
    EXPERIMENTAL NEUROBIOLOGY, 2022, 31 (01) : 17 - 28
  • [8] Frontotemporal Connections in Episodic Memory and Aging: A Diffusion MRI Tractography Study
    Metzler-Baddeley, Claudia
    Jones, Derek K.
    Belaroussi, Boubakeur
    Aggleton, John P.
    O'Sullivan, Michael J.
    JOURNAL OF NEUROSCIENCE, 2011, 31 (37): : 13236 - 13245
  • [9] The average pathlength map: A diffusion MRI tractography-derived index for studying brain pathology
    Pannek, Kerstin
    Mathias, Jane L.
    Bigler, Erin D.
    Brown, Greg
    Taylor, Jamie D.
    Rose, Stephen E.
    NEUROIMAGE, 2011, 55 (01) : 133 - 141
  • [10] Reproducibility of Diffusion MRI-Based Tractography in the Fetal Brain
    Xiao, Jiaxin
    Sun, Cong
    Chen, Ruike
    Zhao, Zhiyong
    Wang, Guangbin
    Wu, Dan
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2024, 60 (05) : 2055 - 2062