WEADE: A workflow for enrichment analysis and data exploration

被引:4
|
作者
Trost, Nils [1 ]
Rempel, Eugen [1 ]
Ermakova, Olga [1 ]
Tamirisa, Srividya [1 ]
Parcalabescu, Letitia [1 ]
Boutros, Michael [2 ]
Lohmann, Jan U. [1 ]
Lohmann, Ingrid [1 ]
机构
[1] COS, Heidelberg, Germany
[2] DKFZ, Heidelberg, Germany
来源
PLOS ONE | 2018年 / 13卷 / 09期
关键词
GENE ONTOLOGY; NETWORKS; SERVER;
D O I
10.1371/journal.pone.0204016
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Data analysis based on enrichment of Gene Ontology terms has become an important step in exploring large gene or protein expression datasets and several stand-alone or web tools exist for that purpose. However, a comprehensive and consistent analysis downstream of the enrichment calculation is missing so far. With WEADE we present a free web application that offers an integrated workflow for the exploration of genomic data combining enrichment analysis with a versatile set of tools to directly compare and intersect experiments or candidate gene lists of any size or origin including cross-species data. Lastly, WEADE supports the graphical representation of output data in the form of functional interaction networks based on prior knowledge, allowing users to go from plain expression data to functionally relevant candidate sub-lists in an interactive and consistent manner.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] MonaGO: a novel gene ontology enrichment analysis visualisation system
    Ziyin Xin
    Yujun Cai
    Louis T. Dang
    Hannah M. S. Burke
    Jerico Revote
    Natalie Charitakis
    Denis Bienroth
    Hieu T. Nim
    Yuan-Fang Li
    Mirana Ramialison
    BMC Bioinformatics, 23
  • [42] BIGO: A web application to analyse gene enrichment analysis results
    Lopez-Fernandez, Aurelio
    Rodriguez-Baena, Domingo
    Gomez-Vela, Francisco
    Diaz-Diaz, Norberto
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2018, 76 : 169 - 178
  • [43] Characterization of poplar metabotypes via mass difference enrichment analysis
    Moritz, Franco
    Kaling, Moritz
    Schnitzler, Joerg-Peter
    Schmitt-Kopplin, Philippe
    PLANT CELL AND ENVIRONMENT, 2017, 40 (07) : 1057 - 1073
  • [44] SEAS: A System for SEED-Based Pathway Enrichment Analysis
    Mao, Xizeng
    Zhang, Yu
    Xu, Ying
    PLOS ONE, 2011, 6 (07):
  • [45] MonaGO: a novel gene ontology enrichment analysis visualisation system
    Xin, Ziyin
    Cai, Yujun
    Dang, Louis T.
    Burke, Hannah M. S.
    Revote, Jerico
    Charitakis, Natalie
    Bienroth, Denis
    Nim, Hieu T.
    Li, Yuan-Fang
    Ramialison, Mirana
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [46] Integrative enrichment analysis of gene expression based on an artificial neuron
    Jiang, Xue
    Pan, Weihao
    Chen, Miao
    Wang, Weidi
    Song, Weichen
    Lin, Guan Ning
    BMC MEDICAL GENOMICS, 2021, 14 (SUPPL 1)
  • [47] EnrichDO: a global weighted model for Disease Ontology enrichment analysis
    Yang, Haixiu
    Fu, Hongyu
    Zhang, Meiyi
    Liu, Yangyang
    He, Yongqun Oliver
    Wang, Chao
    Cheng, Liang
    GIGASCIENCE, 2025, 14
  • [48] Genome-wide association analysis and gene set enrichment analysis with SNP data identify genes associated with 305-day milk yield in Holstein dairy cows
    Clancey, E.
    Kiser, J. N.
    Moraes, J. G. N.
    Dalton, J. C.
    Spencer, T. E.
    Neibergs, H. L.
    ANIMAL GENETICS, 2019, 50 (03) : 254 - 258
  • [49] A Modular Workflow for Model Building, Analysis, and Parameter Estimation in Systems Biology and Neuroscience
    Santos, Joao P. G.
    Pajo, Kadri
    Trpevski, Daniel
    Stepaniuk, Andrey
    Eriksson, Olivia
    Nair, Anu G.
    Keller, Daniel
    Kotaleski, Jeanette Hellgren
    Kramer, Andrei
    NEUROINFORMATICS, 2021, 20 (1) : 241 - 259
  • [50] Microarray Analysis Workflow Based on a Genetic Algorithm to Discover Potential Hub Genes
    Carballido, Jessica Andrea
    CURRENT BIOINFORMATICS, 2022, 17 (09) : 787 - 792