WEADE: A workflow for enrichment analysis and data exploration

被引:4
|
作者
Trost, Nils [1 ]
Rempel, Eugen [1 ]
Ermakova, Olga [1 ]
Tamirisa, Srividya [1 ]
Parcalabescu, Letitia [1 ]
Boutros, Michael [2 ]
Lohmann, Jan U. [1 ]
Lohmann, Ingrid [1 ]
机构
[1] COS, Heidelberg, Germany
[2] DKFZ, Heidelberg, Germany
来源
PLOS ONE | 2018年 / 13卷 / 09期
关键词
GENE ONTOLOGY; NETWORKS; SERVER;
D O I
10.1371/journal.pone.0204016
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Data analysis based on enrichment of Gene Ontology terms has become an important step in exploring large gene or protein expression datasets and several stand-alone or web tools exist for that purpose. However, a comprehensive and consistent analysis downstream of the enrichment calculation is missing so far. With WEADE we present a free web application that offers an integrated workflow for the exploration of genomic data combining enrichment analysis with a versatile set of tools to directly compare and intersect experiments or candidate gene lists of any size or origin including cross-species data. Lastly, WEADE supports the graphical representation of output data in the form of functional interaction networks based on prior knowledge, allowing users to go from plain expression data to functionally relevant candidate sub-lists in an interactive and consistent manner.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] GO2TR: a gene ontology-based workflow to generate target regions for target enrichment experiments
    Jean P. Elbers
    Sabrina S. Taylor
    Conservation Genetics Resources, 2015, 7 : 851 - 857
  • [22] Enhancing Big Data Exploration with Faceted Browsing
    Bergamaschi, Sonia
    Simonini, Giovanni
    Zhu, Song
    CLASSIFICATION, (BIG) DATA ANALYSIS AND STATISTICAL LEARNING, 2018, : 13 - 21
  • [23] A complete workflow for the analysis of full-size ChIP-seq (and similar) data sets using peak-motifs
    Thomas-Chollier, Morgane
    Darbo, Elodie
    Herrmann, Carl
    Defrance, Matthieu
    Thieffry, Denis
    van Helden, Jacques
    NATURE PROTOCOLS, 2012, 7 (08) : 1551 - 1568
  • [24] An introduction to effective use of enrichment analysis software
    Tipney H.
    Hunter L.
    Human Genomics, 4 (3) : 202 - 206
  • [25] ProbCD: enrichment analysis accounting for categorization uncertainty
    Ricardo ZN Vêncio
    Ilya Shmulevich
    BMC Bioinformatics, 8
  • [26] TAFFEL: Independent Enrichment Analysis of gene sets
    Mitja I Kurki
    Jussi Paananen
    Markus Storvik
    Seppo Ylä-Herttuala
    Juha E Jääskeläinen
    Mikael von und zu Fraunberg
    Garry Wong
    Petri Pehkonen
    BMC Bioinformatics, 12
  • [27] Overcoming false-positive gene-category enrichment in the analysis of spatially resolved transcriptomic brain atlas data
    Fulcher, Ben D.
    Arnatkeviciute, Aurina
    Fornito, Alex
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [28] DeFUME: Dynamic exploration of functional metagenomic sequencing data
    Van Der Helm E.
    Geertz-Hansen H.M.
    Genee H.J.
    Malla S.
    Sommer M.O.A.
    BMC Research Notes, 8 (1)
  • [29] Network-based exploration and visualisation of ecological data
    Raymond, Ben
    Hosie, GFaham
    ECOLOGICAL MODELLING, 2009, 220 (05) : 673 - 683
  • [30] Data capitalism and the user: An exploration of privacy cynicism in Germany
    Lutz, Christoph
    Hoffmann, Christian Pieter
    Ranzini, Giulia
    NEW MEDIA & SOCIETY, 2020, 22 (07) : 1168 - 1187