WEADE: A workflow for enrichment analysis and data exploration

被引:4
|
作者
Trost, Nils [1 ]
Rempel, Eugen [1 ]
Ermakova, Olga [1 ]
Tamirisa, Srividya [1 ]
Parcalabescu, Letitia [1 ]
Boutros, Michael [2 ]
Lohmann, Jan U. [1 ]
Lohmann, Ingrid [1 ]
机构
[1] COS, Heidelberg, Germany
[2] DKFZ, Heidelberg, Germany
来源
PLOS ONE | 2018年 / 13卷 / 09期
关键词
GENE ONTOLOGY; NETWORKS; SERVER;
D O I
10.1371/journal.pone.0204016
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Data analysis based on enrichment of Gene Ontology terms has become an important step in exploring large gene or protein expression datasets and several stand-alone or web tools exist for that purpose. However, a comprehensive and consistent analysis downstream of the enrichment calculation is missing so far. With WEADE we present a free web application that offers an integrated workflow for the exploration of genomic data combining enrichment analysis with a versatile set of tools to directly compare and intersect experiments or candidate gene lists of any size or origin including cross-species data. Lastly, WEADE supports the graphical representation of output data in the form of functional interaction networks based on prior knowledge, allowing users to go from plain expression data to functionally relevant candidate sub-lists in an interactive and consistent manner.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] BayGO: Bayesian analysis of ontology term enrichment in microarray data
    Ricardo ZN Vêncio
    Tie Koide
    Suely L Gomes
    Carlos A de B Pereira
    BMC Bioinformatics, 7
  • [2] TargetingVis: visual exploration and analysis of targeted advertising data
    Peng, Di
    Tian, Wei
    Zhu, Min
    Ren, Yukun
    Lin, Xiaojian
    Li, Mingzhao
    JOURNAL OF VISUALIZATION, 2020, 23 (06) : 1113 - 1127
  • [3] Analysis with respect to instrumental variables for the exploration of microarray data structures
    Florent Baty
    Michaël Facompré
    Jan Wiegand
    Joseph Schwager
    Martin H Brutsche
    BMC Bioinformatics, 7
  • [4] Metabox: A Toolbox for Metabolomic Data Analysis, Interpretation and Integrative Exploration
    Wanichthanarak, Kwanjeera
    Fan, Sili
    Grapov, Dmitry
    Barupal, Dinesh Kumar
    Fiehn, Oliver
    PLOS ONE, 2017, 12 (01):
  • [5] Multiple sources of bias confound functional enrichment analysis of global - omics data
    Timmons, James A.
    Szkop, Krzysztof J.
    Gallagher, Iain J.
    GENOME BIOLOGY, 2015, 16
  • [6] Multiple sources of bias confound functional enrichment analysis of global -omics data
    James A. Timmons
    Krzysztof J. Szkop
    Iain J. Gallagher
    Genome Biology, 16
  • [7] A Bayesian Extension of the Hypergeometric Test for Functional Enrichment Analysis
    Cao, Jing
    Zhang, Song
    BIOMETRICS, 2014, 70 (01) : 84 - 94
  • [8] Network enrichment analysis: extension of gene-set enrichment analysis to gene networks
    Andrey Alexeyenko
    Woojoo Lee
    Maria Pernemalm
    Justin Guegan
    Philippe Dessen
    Vladimir Lazar
    Janne Lehtiö
    Yudi Pawitan
    BMC Bioinformatics, 13
  • [9] CLEAN: CLustering Enrichment ANalysis
    Johannes M Freudenberg
    Vineet K Joshi
    Zhen Hu
    Mario Medvedovic
    BMC Bioinformatics, 10
  • [10] Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap
    Reimand, Juri
    Isserlin, Ruth
    Voisin, Veronique
    Kucera, Mike
    Tannus-Lopes, Christian
    Rostamianfar, Asha
    Wadi, Lina
    Meyer, Mona
    Wong, Jeff
    Xu, Changjiang
    Merico, Daniele
    Bader, Gary D.
    NATURE PROTOCOLS, 2019, 14 (02) : 482 - 517