Water-Glass-Based Thermal Paste for High-Temperature Applications

被引:6
|
作者
Shishkin, R. A. [1 ]
Erkhova, N. A. [1 ]
Beketov, A. R. [1 ]
Elagin, A. A. [1 ]
机构
[1] Ural Fed Univ, Inst Phys & Engn, Dept Rare Met & Nanomat, Sverdlovsk Oblast, Russia
来源
JOURNAL OF CERAMIC SCIENCE AND TECHNOLOGY | 2014年 / 5卷 / 03期
关键词
Water glass; silicate modulus; magnesium oxide; boron nitride; thermal conductivity; porosity; thermal paste; composite material; CONDUCTIVITY;
D O I
10.4416/JCST2014-00005
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Inorganic water-glass-based thermal pastes exhibit a higher thermal conductivity coefficient than silicon-based pastes. They can also be used at elevated temperatures. The optimum filler content, silicate modulus, application of a modifier and pressure were studied. As the result, a significant increase in the thermal conductivity at 508 degrees C could be explained. The MgO-Na2O-SiO2 system with high magnesium oxide content has not been studied adequately, so special attention is paid to this system composition.
引用
收藏
页码:199 / 202
页数:4
相关论文
共 50 条
  • [41] Synthesis of high-temperature resistant monolithic zirconia-based aerogel via facile water glass assisted sol–gel method
    Haibo Gao
    Zhiyi Zhang
    Zhenyu Shi
    Jiazheng Zhang
    Mingjia Zhi
    Zhanglian Hong
    Journal of Sol-Gel Science and Technology, 2018, 85 : 567 - 573
  • [42] Characterization of a High-Temperature Thermal Conductivity Reference Material
    Wu, J.
    Morrell, R.
    Allen, C.
    Mildeova, P.
    Turzo-Andras, E.
    Hammerschmidt, U.
    Rafeld, E.
    Blahut, A.
    Hameury, J.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2017, 38 (05)
  • [43] Calorimetric thermal conductivity measurement for high-temperature materials
    S. A. Suvorov
    G. N. Kolesnikov
    Refractories and Industrial Ceramics, 2009, 50 : 62 - 63
  • [44] CALORIMETRIC THERMAL CONDUCTIVITY MEASUREMENT FOR HIGH-TEMPERATURE MATERIALS
    Suvorov, S. A.
    Kolesnikov, G. N.
    REFRACTORIES AND INDUSTRIAL CERAMICS, 2009, 50 (01) : 62 - 63
  • [45] New Ternary Arsenides for High-Temperature Thermoelectric Applications
    Xu, Hong
    Holgate, Tim
    He, Jian
    Su, Zhe
    Tritt, Terry M.
    Kleinke, Holger
    JOURNAL OF ELECTRONIC MATERIALS, 2009, 38 (07) : 1030 - 1036
  • [46] Characterization of a High-Temperature Thermal Conductivity Reference Material
    J. Wu
    R. Morrell
    C. Allen
    P. Mildeova
    E. Turzó-András
    U. Hammerschmidt
    E. Rafeld
    A. Blahut
    J. Hameury
    International Journal of Thermophysics, 2017, 38
  • [47] High-temperature thermal conductivity of ferroelectric and antiferroelectric perovskites
    Tachibana, Makoto
    Bourges, Cedric
    Mori, Takao
    APPLIED PHYSICS EXPRESS, 2022, 15 (12)
  • [48] High-Temperature Thermal Conductivity Measurement Apparatus Based on Guarded Hot Plate Method
    Turzo-Andras, E.
    Magyarlaki, T.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2017, 38 (10)
  • [49] A high-temperature system based on the laser flash method to measure the thermal diffusivity of melts
    Maeda, Y
    Sagara, H
    Tye, RP
    Masuda, M
    Ohta, H
    Waseda, Y
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 1996, 17 (01) : 253 - 261
  • [50] Surface-modified graphite based polymer nanocomposites for high-temperature geothermal applications
    Liu, Sai
    Taleghani, Arash Dahi
    Tabatabaei, Maryam
    POLYMER COMPOSITES, 2024, 45 (16) : 14715 - 14730