One-step alternating direction implicit FDTD algorithm

被引:0
|
作者
Liu, SB [1 ]
Liu, SQ [1 ]
机构
[1] Nanchang Univ, Sch Sci, Nanchang 330047, Peoples R China
来源
CHINESE PHYSICS | 2004年 / 13卷 / 11期
关键词
ADI-FDTD; FDTD methods; Courant condition; unconditionally stable;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a novel unconditionally stable alternating direction implicit finite-different time-domain method (ADI-FDTD) called the one-step ADI-FDTD method is presented, where the calculation for one discrete time stop is performed using only one procedure, but not the original two sub-updating procedures. Consequently, the proposed one-step ADI-FDTD methods have consumed less computer memory and computation resources and have been faster than the conventional ADI-FDTD methods. We analytically and numerically verified that the new algorithm is unconditionally stable and free from the Courant condition.
引用
收藏
页码:1892 / 1895
页数:4
相关论文
共 50 条
  • [31] Implementation of CPML for One-Step Leapfrog WCS-FDTD Method
    Wang, Xiang-Hua
    Yin, Wen-Yan
    Chen, Zhizhang
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2015, 25 (08) : 496 - 498
  • [32] Alternating-direction implicit (ADI) formulation of the finite-difference time-domain (FDTD) method: Algorithm and material dispersion implementation
    Staker, SW
    Holloway, CL
    Bhobe, AU
    Piket-May, M
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2003, 45 (02) : 156 - 166
  • [33] THE ALTERNATING DIRECTION MULTIZONE IMPLICIT METHOD
    ROSENFELD, M
    YASSOUR, Y
    JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 110 (02) : 212 - 220
  • [34] COMPARING OPTIMUM ALTERNATING DIRECTION PRECONDITIONING AND EXTRAPOLATED ALTERNATING DIRECTION IMPLICIT SCHEMES
    HADJIDIMOS, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 59 (03) : 573 - 586
  • [35] COMMON FIXED POINTS OF TWO MULTIVALUED NONEXPANSIVE MAPS BY A ONE-STEP IMPLICIT ALGORITHM IN HYPERBOLIC SPACES
    Khan, S. H.
    Fukhar-ud-din, H.
    Kalsoom, A.
    MATEMATICKI VESNIK, 2014, 66 (04): : 397 - 409
  • [36] A one-step crust and skeleton extraction algorithm
    Gold, C
    Snoeyink, J
    ALGORITHMICA, 2001, 30 (02) : 144 - 163
  • [37] One-step Backprojection Algorithm for Computed Tomography
    Hwang, Dosik
    Zeng, Gengsheng L.
    2006 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOL 1-6, 2006, : 3453 - 3457
  • [38] A One-Step Crust and Skeleton Extraction Algorithm
    C. Gold
    J. Snoeyink
    Algorithmica, 2001, 30 : 144 - 163
  • [39] An unconditionally stable one-step leapfrog ADI-BOR-FDTD method
    Wang, Yi-Gang
    Chen, Bin
    Chen, Hai-Lin
    Xiong, Run
    IEEE Antennas and Wireless Propagation Letters, 2013, 12 : 647 - 650
  • [40] One-Step Leapfrog LOD-FDTD Method With CPML for Periodic Structures
    Liu, Yicheng
    Shi, Lihua
    Chen, Hailin
    Wang, Jianbao
    Lei, Qi
    Duan, Yantao
    Zhang, Qi
    Fu, Shangchen
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2019, 18 (01): : 9 - 13