Sitcom-star-based clothing retrieval for video advertising: a deep learning framework

被引:0
作者
Zhang, Haijun [1 ]
Ji, Yuzhu [1 ]
Huang, Wang [1 ]
Liu, Linlin [1 ]
机构
[1] Xili Univ Town, Harbin Inst Technol, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
基金
国家重点研发计划;
关键词
Video advertising; Deep learning; Object detection; Face verification; Image retrieval; Clothing detection; SEARCH;
D O I
10.1007/s00521-018-3579-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel learning-based framework for video content-based advertising, DeepLink, which aims at linking Sitcom-stars and online shops with clothing retrieval by using state-of-the-art deep convolutional neural networks (CNNs). Specifically, several deep CNN models are adopted for composing multiple sub-modules in DeepLink, including human-body detection, human pose selection, face verification, clothing detection and retrieval from advertisements (ads) pool that is constructed by clothing images crawled from real-world online shops. For clothing detection and retrieval from ad-images, we firstly transfer the state-of-the-art deep CNN models to our data domain, and then train corresponding models based on our constructed large-scale clothes datasets. Extensive experimental results demonstrate the feasibility and efficacy of our proposed clothing-based video advertising system.
引用
收藏
页码:7361 / 7380
页数:20
相关论文
共 62 条
  • [1] 2D Human Pose Estimation: New Benchmark and State of the Art Analysis
    Andriluka, Mykhaylo
    Pishchulin, Leonid
    Gehler, Peter
    Schiele, Bernt
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 3686 - 3693
  • [2] [Anonymous], 2015, Nature, DOI [10.1038/nature14539, DOI 10.1038/NATURE14539]
  • [3] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848
  • [4] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
  • [5] Bringing Content Awareness to Web-Based IDTV Advertising
    Diaz Redondo, Rebeca P.
    Fernandez Vilas, Ana
    Pazos Arias, Jose Juan
    Ramos Cabrer, Manuel
    Gil Solla, Albert
    Garcia Duque, Jorge
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2012, 42 (03): : 324 - 333
  • [6] Scalable Object Detection using Deep Neural Networks
    Erhan, Dumitru
    Szegedy, Christian
    Toshev, Alexander
    Anguelov, Dragomir
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 2155 - 2162
  • [7] Object Detection with Discriminatively Trained Part-Based Models
    Felzenszwalb, Pedro F.
    Girshick, Ross B.
    McAllester, David
    Ramanan, Deva
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (09) : 1627 - 1645
  • [8] Fast R-CNN
    Girshick, Ross
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 1440 - 1448
  • [9] Rich feature hierarchies for accurate object detection and semantic segmentation
    Girshick, Ross
    Donahue, Jeff
    Darrell, Trevor
    Malik, Jitendra
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 580 - 587
  • [10] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778