Molecular adsorption bonding configurations and specific interfacial chemistry of alanine on Si(111)7x7 have been determined by combining the results from scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) with ab initio calculations based on the density functional theory (DFT). XPS spectra of the N is region show that alanine molecules bind to the 7X7 surface by N-Si covalent bonding, while STM imaging reveals that such N-H dissociative adsorption of alanine occurs on an adjacent Si adatom-restatom pair, with the dehydrogenated alanine moiety and dissociated H atom occupying the Si adatom and restatom sites, respectively. At a sample bias above +2 V, the dehydrogenated alanine appears as a bright round protrusion, slightly off-center from a Si adatom site and leaning toward the opposite Si adatom across the dimer wall. The off-center character can be attributed to an electrostatic attraction between the electron-rich carbonyl O of the dehydrogenated alanine and electron-deficient nearest Si adatom across the dimer wall. Our DFT calculation also shows that the monodentate O-Si bonding configuration resulting from O-H dissociative adsorption is more thermodynamically favorable than the experimentally observed N-Si bonding configuration, suggesting that the interfacial dissociative adsorption reaction is a kinetically controlled rather than a thermodynamically driven process. Alanine molecules in the second adlayer (transitional layer) are found to attach to those in the first adlayer (interfacial layer) by N center dot center dot center dot HO hydrogen bonding, as supported by the presence of the N is feature at 401.0 eV. An alanine molecule H-bonded to a dehydrogenated alanine in the first adlayer has also been observed in STM as a brighter and larger protrusion close to the expected location of the free OH group in the dehydrogenated first-adlayer alanine. No thick zwitterionic alanine film can be obtained at room temperature possibly due to steric constraint caused by the methyl group.