Positive solutions for continuous and discrete boundary value problems to the one-dimension p-Laplacian

被引:34
作者
Jiang, DQ [1 ]
Chu, JF
O'Regan, D
Agarwal, RP
机构
[1] NE Normal Univ, Dept Math, Changchun 130024, Peoples R China
[2] Natl Univ Ireland Univ Coll Galway, Dept Math, Galway, Ireland
[3] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2004年 / 7卷 / 04期
关键词
positive solutions; continuous and discrete boundary value problem; p-Laplacian; fixed point theorem in cones;
D O I
10.7153/mia-07-53
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
New existence results (for positive solutions) for continuous and discrete boundary value problems to the one-dimension p-Laplacian are presented in this paper. Here we use a well-known fixed point theorem in cones. Our results improve several recent results established in the literature.
引用
收藏
页码:523 / 534
页数:12
相关论文
共 24 条
[1]  
Agarwal R.P., 1999, POSITIVE SOLUTIONS D
[2]   Eigenvalues and the one-dimensional p-Laplacian [J].
Agarwal, RP ;
Lü, HS ;
O'Regan, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 266 (02) :383-400
[3]   Boundary value problems for discrete equations [J].
Agarwal, RP ;
ORegan, D .
APPLIED MATHEMATICS LETTERS, 1997, 10 (04) :83-89
[4]   Nonpositone discrete boundary value problems [J].
Agarwal, RP ;
O'Regan, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 39 (02) :207-215
[5]   Singular discrete boundary value problems [J].
Agarwal, RP ;
O'Regan, D .
APPLIED MATHEMATICS LETTERS, 1999, 12 (04) :127-131
[6]  
Ben-Naoum A.K., 1997, DIFFERENTIAL INTEGRA, V10, P1093
[7]   PAIRS OF POSITIVE SOLUTIONS FOR THE ONE-DIMENSIONAL P-LAPLACIAN [J].
DECOSTER, C .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (05) :669-681
[8]  
Deimling K., 2010, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[9]   Existence and multiplicity of positive solutions for elliptic systems [J].
Dunninger, DR ;
Wang, HY .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 29 (09) :1051-1060
[10]   Multiplicity of positive radial solutions for an elliptic system on an annulus [J].
Dunninger, DR ;
Wang, HY .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (05) :803-811