EEG-based emotion recognition utilizing wavelet coefficients

被引:16
|
作者
Momennezhad, Ali [1 ]
机构
[1] Sahand Univ Technol, Sahand, Tabriz, Iran
关键词
Emotion recognition; EEG; BCI; Detail Coefficients; Approximation coefficients; MAHNOB-HCI; LIBSVM;
D O I
10.1007/s11042-018-5906-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper focuses on EEG (Electroencephalography) signals as a robust method for emotion recognition. In emotion recognition, researchers usually use features such as eye pupil diameter, facial features, EEG signals and physiological signals like: respiration amplitude, heart rate, skin temperature, blood volume pulse, respiration rate etc. In this paper we use just EEG signals as we believe that a human being may suffer from some physical disabilities and impairments like visual disorders, motor impairment or some other common disorders. So, the use of EEG signal, in some aspects, can be more useful and utilizable in real life. In this paper, we use a combination of some existent techniques on this theme, such as wavelet coefficients and an 8-number electrode configuration, which makes our approach really convenient and comfortable to use, and some other methods that may seem minor; But the way we employ and combine them, make a novel, productive, high efficient and reliable algorithm that highly can help people with some special disorders. To have a brief overview of the results of our work: the average Arousal F-Score and Valence F-Score for our algorithm are, respectively, 0.73 and 0.77. These values for a corresponding work are, 0.60 and 0.50, respectively. As it is seen the results have improved by 0.13 and 0.27. The results of our EEG-based algorithm are even better than the fusion of facial and EEG signals or physiological signals presented in the corresponding works. Beside this better performance, the ease and comfort that our method provides for users, is far beyond description.
引用
收藏
页码:27089 / 27106
页数:18
相关论文
共 50 条
  • [41] Discrete Wavelet Transform Coefficients for Emotion Recognition from EEG Signals
    Yohanes, Rendi E. J.
    Ser, Wee
    Huang, Guang-bin
    2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 2251 - 2254
  • [42] EEG-based emotion recognition using tunable Q wavelet transform and rotation forest ensemble classifier
    Subasi, Abdulhamit
    Tuncer, Turker
    Dogan, Sengul
    Tanko, Dahiru
    Sakoglu, Unal
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 68 (68)
  • [43] A Domain Generative Graph Network for EEG-Based Emotion Recognition
    Gu, Yun
    Zhong, Xinyue
    Qu, Cheng
    Liu, Chuanjun
    Chen, Bin
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (05) : 2377 - 2386
  • [44] EEG-Based Machine Learning Models for Emotion Recognition in HRI
    Staffa, Mariacarla
    D'Errico, Lorenzo
    ARTIFICIAL INTELLIGENCE IN HCI, AI-HCI 2023, PT II, 2023, 14051 : 285 - 297
  • [45] Hierarchical Convolutional Neural Networks for EEG-Based Emotion Recognition
    Jinpeng Li
    Zhaoxiang Zhang
    Huiguang He
    Cognitive Computation, 2018, 10 : 368 - 380
  • [46] A EEG-based emotion recognition model with rhythm and time characteristics
    Yan J.
    Chen S.
    Deng S.
    Brain Informatics, 2019, 6 (01)
  • [47] EEG-based emotion recognition with deep convolutional neural networks
    Ozdemir, Mehmet Akif
    Degirmenci, Murside
    Izci, Elf
    Akan, Aydin
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2021, 66 (01): : 43 - 57
  • [48] Enhanced deep capsule network for EEG-based emotion recognition
    Huseyin Cizmeci
    Caner Ozcan
    Signal, Image and Video Processing, 2023, 17 : 463 - 469
  • [49] Research of EEG-based emotion recognition for the deaf with feature fusion
    Mao, Zemin
    Zhao, Xuewen
    Song, Yu
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2024, 45 (03) : 216 - 236
  • [50] Enhanced deep capsule network for EEG-based emotion recognition
    Cizmeci, Huseyin
    Ozcan, Caner
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (02) : 463 - 469