AGE-DEPENDENT EQUATIONS WITH NON-LINEAR DIFFUSION

被引:20
作者
Walker, Christoph [1 ]
机构
[1] Leibniz Univ Hannover, Inst Angew Math, D-30167 Hannover, Germany
关键词
Age structure; non-linear diffusion; population models; evolution systems; NON-LINEAR DIFFUSION; POPULATION-DYNAMICS; ASYMPTOTIC-BEHAVIOR; GLOBAL EXISTENCE; MODEL;
D O I
10.3934/dcds.2010.26.691
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the well-posedness of models involving age structure and non-linear diffusion. Such problems arise in the study of population dynamics. It is shown how diffusion and age boundary conditions can be treated that depend non-linearly and possibly non-locally on the density itself. The abstract approach is applied to concrete examples.
引用
收藏
页码:691 / 712
页数:22
相关论文
共 27 条
[2]   DYNAMIC THEORY OF QUASILINEAR PARABOLIC-SYSTEMS .3. GLOBAL EXISTENCE [J].
AMANN, H .
MATHEMATISCHE ZEITSCHRIFT, 1989, 202 (02) :219-250
[3]  
Amann H., 1991, Nonlinear Analysis: A Tribute in Honour of Giovanni Prodi, P27
[4]  
Amann H., 1995, Abstract Linear Theory
[5]   A DEGENERATE NONLINEAR DIFFUSION PROBLEM IN AGE-STRUCTURED POPULATION-DYNAMICS [J].
BUSENBERG, S ;
IANNELLI, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (12) :1411-1429
[6]   A CLASS OF NON-LINEAR DIFFUSION-PROBLEMS IN AGE-DEPENDENT POPULATION-DYNAMICS [J].
BUSENBERG, S ;
IANNELLI, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (05) :501-529
[7]  
BUSENBERG S, 1982, LECT NOTES BIOMATH, V54, P425
[8]   NON-LINEAR AGE-DEPENDENT POPULATION-GROWTH WITH HISTORY-DEPENDENT BIRTH-RATE [J].
DIBLASIO, G .
MATHEMATICAL BIOSCIENCES, 1979, 46 (3-4) :279-291
[9]   INITIAL-BOUNDARY VALUE-PROBLEM FOR AGE-DEPENDENT POPULATION DIFFUSION [J].
DIBLASIO, G ;
LAMBERTI, L .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 35 (03) :593-615
[10]  
Fragnelli G, 2007, DISCRETE CONT DYN-B, V7, P735