Principal Component Analysis of Triangular Fuzzy Number Data

被引:0
|
作者
Chen, Na-xin [1 ]
Zhang, Yun-jie [1 ]
机构
[1] Dalian Maritime Univ, Dept Math, Dalian 116026, Peoples R China
来源
FUZZY INFORMATION AND ENGINEERING, VOLUME 2 | 2009年 / 62卷
关键词
Principal component analysis; triangular fuzzy number; dimension reduction; feature extraction; RECOGNITION SYSTEM; INTERVAL DATA; C-MEANS; PCA;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Principal component analysis (PCA) is a well-known tool often used for the exploratory analysis of a. data set, which can be used to reduce the data dimensionality and also to decrease the dependency among features. The traditional PCA algorithms are designed aiming at numerical data instead of non-numerical data. In this article we propose a generalized PCA algorithm which tackles a problem where data, is linguistic variable represented by triangular fuzzy number. Using the information provided by the centroid and fuzzy boundary of triangular fuzzy number, the proposed method starts with translating triangular fuzzy numbers into real numbers, then PCA is carried out on high-dimensional real number data set. Finally, the application of the proposed algorithm to a triangular fuzzy number data set is described.
引用
收藏
页码:797 / 808
页数:12
相关论文
共 50 条
  • [1] Principal Component Analysis of symmetric fuzzy data
    Giordani, P
    Kiers, HAL
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2004, 45 (03) : 519 - 548
  • [2] A ROBUST FUZZY CLUSTERING APPROACH AND ITS APPLICATION TO PRINCIPAL COMPONENT ANALYSIS
    Yang, Ying-Kuei
    Lee, Chien-Nan
    Shieh, Horng-Lin
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2010, 16 (01) : 1 - 11
  • [3] Correction of Copy Number Variation Data Using Principal Component Analysis
    Chen, Jiayu
    Liu, Jingyu
    Calhoun, Vince D.
    2010 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS (BIBMW), 2010, : 827 - 828
  • [4] A comparison of three methods for principal component analysis of fuzzy interval data
    Giordani, Paolo
    Kiers, Henk A. L.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (01) : 379 - 397
  • [5] Principal component analysis of fuzzy data using autoassociative neural networks
    Denoeux, T
    Masson, MH
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2004, 12 (03) : 336 - 349
  • [6] Principal component analysis of binary genomics data
    Song, Yipeng
    Westerhuis, Johan A.
    Aben, Nanne
    Michaut, Magali
    Wessels, Lodewyk F. A.
    Smilde, Age K.
    BRIEFINGS IN BIOINFORMATICS, 2019, 20 (01) : 317 - 329
  • [7] Principal component analysis based on intuitionistic fuzzy random variables
    Hesamian, Gholamreza
    Akbari, Mohammad Ghasem
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (04)
  • [8] Fuzzy Sparse Deviation Regularized Robust Principal Component Analysis
    Gao, Yunlong
    Lin, Tingting
    Pan, Jinyan
    Nie, Feiping
    Xie, Youwei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 5645 - 5660
  • [9] Principal Component Analysis With Fuzzy Elastic Net for Feature Selection
    Gao, Yunlong
    Wu, Qinting
    Xu, Zhenghong
    Cao, Chao
    Pan, Jinyan
    Shao, Guifang
    Nie, Feiping
    Zhu, Qingyuan
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2024, 32 (12) : 6878 - 6890