Sup-Norm and Nodal Domains of Dihedral Maass Forms

被引:4
作者
Huang, Bingrong [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, Tel Aviv, Israel
基金
欧洲研究理事会;
关键词
BOUNDS; EIGENFUNCTIONS;
D O I
10.1007/s00220-019-03335-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we improve the sup-norm bound and the lower bound of the number of nodal domains for dihedral Maass forms, which are a distinguished sequence of Laplacian eigenfunctions on an arithmetic hyperbolic surface. More specifically, let be a dihedral Maass form with spectral parameter then we prove that which is an improvement over the bound given by Iwaniec and Sarnak. As a consequence, we get a better lower bound for the number of nodal domains intersecting a fixed geodesic segment under the Lindelof Hypothesis. Unconditionally, we prove that the number of nodal domains grows faster than for any 0 for almost all dihedral Maass forms.
引用
收藏
页码:1261 / 1282
页数:22
相关论文
共 46 条
[1]  
[Anonymous], ISRAEL MATH C P
[2]  
[Anonymous], THESIS
[3]  
Assing E, 2017, ARXIV171000363
[4]   WAVE-EQUATION ON A COMPACT RIEMANNIAN MANIFOLD WITHOUT CONJUGATE POINTS [J].
BERARD, PH .
MATHEMATISCHE ZEITSCHRIFT, 1977, 155 (03) :249-276
[5]   REGULAR AND IRREGULAR SEMICLASSICAL WAVEFUNCTIONS [J].
BERRY, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1977, 10 (12) :2083-2091
[6]  
Blomer V., 2016, ARXIV160509360
[7]  
Blomer V, 2016, J I MATH JUSSIEU
[8]   Bounding sup-norms of cusp forms of large level [J].
Blomer, Valentin ;
Holowinsky, Roman .
INVENTIONES MATHEMATICAE, 2010, 179 (03) :645-681
[9]  
Bogomolny E., 2002, PHYS REV LETT, V88, P114
[10]   A ZERO-FREE REGION FOR THE HECKE L-FUNCTIONS [J].
COLEMAN, MD .
MATHEMATIKA, 1990, 37 (74) :287-304