The future of early cancer detection

被引:243
作者
Fitzgerald, Rebecca C. [1 ]
Antoniou, Antonis C. [2 ]
Fruk, Ljiljana [3 ]
Rosenfeld, Nitzan [4 ]
机构
[1] Univ Cambridge, Canc Res UK Cambridge Ctr, Early Detect Programme, Cambridge, England
[2] Univ Cambridge, Dept Publ Hlth & Primary Care, Ctr Canc Genet Epidemiol, Cambridge, England
[3] Univ Cambridge, Dept Chem Engn & Biotechnol, Cambridge, England
[4] Univ Cambridge, Canc Res UK Cambridge Inst, Li Ka Shing Ctr, Cambridge, England
关键词
OFFSET RAMAN-SPECTROSCOPY; BREAST-CANCER; PROSTATE-CANCER; ARTIFICIAL-INTELLIGENCE; OXIDE NANOPARTICLES; GOLD NANOPARTICLES; CONTRAST AGENTS; RISK; MODEL; CARE;
D O I
10.1038/s41591-022-01746-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A proactive approach to detecting cancer at an early stage can make treatments more effective, with fewer side effects and improved long-term survival. However, as detection methods become increasingly sensitive, it can be difficult to distinguish inconsequential changes from lesions that will lead to life-threatening cancer. Progress relies on a detailed understanding of individualized risk, clear delineation of cancer development stages, a range of testing methods with optimal performance characteristics, and robust evaluation of the implications for individuals and society. In the future, advances in sensors, contrast agents, molecular methods, and artificial intelligence will help detect cancer-specific signals in real time. To reduce the burden of cancer on society, risk-based detection and prevention needs to be cost effective and widely accessible. Technological advances are producing exquisitely sensitive cancer detection tests. This Review discusses who should be tested, and how-and looks to the future of personalized, risk-based cancer screening.
引用
收藏
页码:666 / 677
页数:12
相关论文
共 146 条
[41]   Risk Prediction Models for Kidney Cancer: A Systematic Review [J].
Harrison, Hannah ;
Thompson, Rachel E. ;
Lin, Zhiyuan ;
Rossi, Sabrina H. ;
Stewart, Grant D. ;
Griffin, Simon J. ;
Usher-Smith, Juliet A. .
EUROPEAN UROLOGY FOCUS, 2021, 7 (06) :1380-1390
[42]   The practical implementation of artificial intelligence technologies in medicine [J].
He, Jianxing ;
Baxter, Sally L. ;
Xu, Jie ;
Xu, Jiming ;
Zhou, Xingtao ;
Zhang, Kang .
NATURE MEDICINE, 2019, 25 (01) :30-36
[43]   Building a synthetic mechanosensitive signaling pathway in compartmentalized artificial cells [J].
Hindley, James W. ;
Zheleva, Daniela G. ;
Elani, Yuval ;
Charalambous, Kalypso ;
Barter, Laura M. C. ;
Booth, Paula J. ;
Bevan, Charlotte L. ;
Law, Robert V. ;
Ces, Oscar .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (34) :16711-16716
[44]   Superhydrophobic drug-loaded mesoporous silica nanoparticles capped with β-cyclodextrin for ultrasound image-guided combined antivascular and chemo-sonodynamic therapy [J].
Ho, Yi-Ju ;
Wu, Cheng-Han ;
Jin, Qiao-feng ;
Lin, Chih-Yu ;
Chiang, Pei-Hua ;
Wu, Nan ;
Fan, Ching-Hsiang ;
Yang, Chia-Min ;
Yeh, Chih-Kuang .
BIOMATERIALS, 2020, 232
[45]   Quantitative evidence for early metastatic seeding in colorectal cancer [J].
Hu, Zheng ;
Ding, Jie ;
Ma, Zhicheng ;
Sun, Ruping ;
Seoane, Jose A. ;
Shaffer, J. Scott ;
Suarez, Carlos J. ;
Berghoff, Anna S. ;
Cremolini, Chiara ;
Falcone, Alfredo ;
Loupakis, Fotios ;
Birner, Peter ;
Preusser, Matthias ;
Lenz, Heinz-Josef ;
Curtis, Christina .
NATURE GENETICS, 2019, 51 (07) :1113-+
[46]   Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges [J].
Huang, Shigao ;
Yang, Jie ;
Fong, Simon ;
Zhao, Qi .
CANCER LETTERS, 2020, 471 :61-71
[47]   A 16-yr Follow-up of the European Randomized study of Screening for Prostate Cancer [J].
Hugosson, Jonas ;
Roobol, Monique J. ;
Mansson, Marianne ;
Tammela, Teuvo L. J. ;
Zappa, Marco ;
Nelen, Vera ;
Kwiatkowski, Maciej ;
Lujan, Marcos ;
Carlsson, Sigrid, V ;
Talala, Kirsi M. ;
Lilja, Hans ;
Denis, Louis J. ;
Recker, Franz ;
Paez, Alvaro ;
Puliti, Donella ;
Villers, Arnauld ;
Rebillard, Xavier ;
Kilpelainen, Tuomas P. ;
Stenman, Ulf H. ;
Godtman, Rebecka Arnsrud ;
Kollberg, Karin Stinesen ;
Moss, Sue M. ;
Kujala, Paula ;
Taari, Kimmo ;
Huber, Andreas ;
van der Kwast, Theodorus ;
Heijnsdijk, Eveline A. ;
Bangma, Chris ;
De Koning, Harry J. ;
Schroder, Fritz H. ;
Auvinen, Anssi .
EUROPEAN UROLOGY, 2019, 76 (01) :43-51
[48]   Prospective evaluation of a breast-cancer risk model integrating classical risk factors and polygenic risk in 15 cohorts from six countries [J].
Hurson, Amber N. ;
Choudhury, Parichoy Pal ;
Gao, Chi ;
Huesing, Anika ;
Eriksson, Mikael ;
Shi, Min ;
Jones, Michael E. ;
Evans, D. Gareth R. ;
Milne, Roger L. ;
Gaudet, Mia M. ;
Vachon, Celine M. ;
Chasman, Daniel, I ;
Easton, Douglas F. ;
Schmidt, Marjanka K. ;
Kraft, Peter ;
Garcia-Closas, Montserrat ;
Chatterjee, Nilanjan .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2021, 50 (06) :1897-1911
[49]  
Imperiale TF, 2014, NEW ENGL J MED, V371, P187, DOI [10.1056/NEJMc1405215, 10.1056/NEJMoa1311194]
[50]   NIR-laser-triggered gadolinium-doped carbon dots for magnetic resonance imaging, drug delivery and combined photothermal chemotherapy for triple negative breast cancer [J].
Jiang, Qunjiao ;
Liu, Li ;
Li, Qiuying ;
Cao, Yi ;
Chen, Dong ;
Du, Qishi ;
Yang, Xiaobo ;
Huang, Dongping ;
Pei, Renjun ;
Chen, Xing ;
Huang, Gang .
JOURNAL OF NANOBIOTECHNOLOGY, 2021, 19 (01)