Deep learning with perspective modeling for early detection of malignancy in mammograms

被引:16
|
作者
Kumar, Ashok [1 ]
Mukherjee, Saurabh [1 ]
Luhach, Ashish Kr [2 ]
机构
[1] Banasthati Vidyapith, Dept Comp Sci, Banasthali 304022, Rajasthan, India
[2] Papua New Guinea Univ Technol, Dept Elect & Commun Engn, Lae 411, Papua N Guinea
关键词
Benign; Malignant; Imaging modality; Invasive; Non-invasive; COMPUTER-AIDED DIAGNOSIS; BREAST-CANCER; CLASSIFICATION; ENSEMBLE; SCHEME; IMAGES; TISSUE;
D O I
10.1080/09720529.2019.1642624
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Malignancy in human bodies are named behind the body part in which it invades exponentially like lungs cancer if malignancy is invading lungs. Growth of a cell is controlled by its centroid and it goes uncontrolled if it is behaving abnormally. Objective of this work is to deliver a classification system that can be used to classify breast images as a benign or malignant and if malignant then can further classify which type of malignancy that is non-invasive or invasive cancer. This model can also prescribe treatment for predicted malignant class with details like time taken, degree of seriousness, probability of curing by opted treatment because treatment of a breast cancer depends on type and stage of malignancy. To achieve higher or clinical usage accuracy by deploying advances of soft computing and image analysis like deep learning and deep neural networks to decrease breast cancer death as a concrete effort using mammograms by detecting breast cancer in an early stage.
引用
收藏
页码:627 / 643
页数:17
相关论文
共 50 条
  • [1] Early Detection of Breast Cancer using Deep Learning in Mammograms
    Gudur, Rashmi
    Patil, Nitin
    Thorat, S. T.
    JOURNAL OF PIONEERING MEDICAL SCIENCES, 2024, 13 (02): : 18 - 27
  • [2] A context-sensitive deep learning approach for microcalcification detection in mammograms
    Wang, Juan
    Yang, Yongyi
    PATTERN RECOGNITION, 2018, 78 : 12 - 22
  • [3] Deep learning modeling using normal mammograms for predicting breast cancer risk
    Arefan, Dooman
    Mohamed, Aly A.
    Berg, Wendie A.
    Zuley, Margarita L.
    Sumkin, Jules H.
    Wu, Shandong
    MEDICAL PHYSICS, 2020, 47 (01) : 110 - 118
  • [4] Microcalcification Detection in Mammograms Using Deep Learning
    Kahnouei, Mahmoud Shiri
    Giti, Masoumeh
    Akhaee, Mohammad Ali
    Ameri, Ali
    IRANIAN JOURNAL OF RADIOLOGY, 2022, 19 (01)
  • [5] Recent advancements in machine learning and deep learning-based breast cancer detection using mammograms
    Sahu, Adyasha
    Das, Pradeep Kumar
    Meher, Sukadev
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2023, 114
  • [6] Deep Learning Modeling Using Normal Mammograms for Predicting Breast Cancer
    Sivasangari, A.
    Deepa, D.
    Anandhi, T.
    Mana, Suja Cherukullapurath
    Vignesh, R.
    Samhitha, B. Keerthi
    MOBILE COMPUTING AND SUSTAINABLE INFORMATICS, 2022, 68 : 411 - 422
  • [7] DCT FEATURES BASED MALIGNANCY AND ABNORMALITY TYPE DETECTION METHOD FOR MAMMOGRAMS
    Jaffar, M. Arfan
    Naveed, Nawazish
    Zia, Sultan
    Ahmed, Bilal
    Choi, Tae-Sun
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2011, 7 (09): : 5495 - 5513
  • [8] Segmentation of Masses on Mammograms Using Data Augmentation and Deep Learning
    Zeiser, Felipe Andre
    da Costa, Cristiano Andre
    Zonta, Tiago
    Marques, Nuno M. C.
    Roehe, Adriana Vial
    Moreno, Marcelo
    Righi, Rodrigo da Rosa
    JOURNAL OF DIGITAL IMAGING, 2020, 33 (04) : 858 - 868
  • [9] Deep learning for mass detection in Full Field Digital Mammograms
    Agarwal, Richa
    Diaz, Oliver
    Yap, Moi Hoon
    Llado, Xavier
    Marti, Robert
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 121
  • [10] Mass Detection in Mammograms Using a Robust Deep Learning Model
    Singh, Vivek Kumar
    Abdel-Nasser, Mohamed
    Rashwan, Hatem A.
    Akram, Farhan
    Haffar, Rami
    Pandey, Nidhi
    Sarker, Md Mostafa Kamal
    Kohan, Sebastian
    Guma, Josep
    Romani, Santiago
    Puig, Domenec
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2019, 319 : 365 - 372