INVERSE SATAKE ISOMORPHISM AND CHANGE OF WEIGHT

被引:1
作者
Abe, N. [1 ]
Herzig, F. [2 ]
Vigneras, M. F. [3 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, 3-8-1 Komaba,Meguro Ku, Tokyo 1538914, Japan
[2] Univ Toronto, Dept Math, 40 St George St,Room 6290, Toronto, ON M5S 2E4, Canada
[3] Inst Math Jussieu, 4 Pl Jussieu, F-75005 Paris, France
来源
REPRESENTATION THEORY | 2022年 / 26卷
基金
加拿大自然科学与工程研究理事会;
关键词
Change of weight; Satake transform; compact induction; parabolic induction; pro-p Iwahori Hecke algebra; IWAHORI HECKE ALGEBRA; P-ADIC GROUP; REDUCTIVE GROUPS; MODULO-P; REPRESENTATIONS;
D O I
10.1090/ert/594
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be any connected reductive p-adic group. Let K subset of G be any special parahoric subgroup and V,V' be any two irreducible smooth (F-p) over bar [K]-modules. The main goal of this article is to compute the image of the Hecke bimodule End((Fp) over bar) (c-Ind(K)(G) V, c-Ind(K)(G) V') by the generalized Satake transform and to give an explicit formula for its inverse, using the pro-p Iwahori Hecke algebra of G. This immediately implies the "change of weight theorem" in the proof of the classification of mod p irreducible admissible representations of G in terms of supersingular ones. A simpler proof of the change of weight theorem, not using the pro-p Iwahori Hecke algebra or the Lusztig-Kato formula, is given when G is split and in the appendix when G is quasi-split, for almost all K.
引用
收藏
页码:264 / 324
页数:61
相关论文
共 30 条
  • [1] A CLASSIFICATION OF IRREDUCIBLE ADMISSIBLE MOD p REPRESENTATIONS OF p-ADIC REDUCTIVE GROUPS
    Abe, N.
    Henniart, G.
    Herzig, F.
    Vigneras, M. -F.
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 30 (02) : 495 - 559
  • [2] Modulo p parabolic induction of pro-p-Iwahori Hecke algebra
    Abe, Noriyuki
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 749 : 1 - 64
  • [3] On a classification of irreducible admissible modulo p representations of a p-adic split reductive group
    Abe, Noriyuki
    [J]. COMPOSITIO MATHEMATICA, 2013, 149 (12) : 2139 - 2168
  • [4] Bjorner Anders, 2005, GRADUATE TEXTS MATH, V231
  • [5] BOURBAKI N, 2002, LIE GROUPS LIE ALGEB
  • [6] Bruhat F., 1984, I HAUTES ETUDES SCI, V60, P197
  • [7] Cabanes M., 2004, Representation Theory of Finite Reductive Groups. New Mathematical Monographs, DOI [10.1017/CBO9780511542763, DOI 10.1017/CBO9780511542763]
  • [8] CARTER RW, 1976, P LOND MATH SOC, V32, P347
  • [9] Colliot-Thélène JL, 2008, J REINE ANGEW MATH, V618, P77
  • [10] REPRESENTATIONS OF REDUCTIVE GROUPS OVER FINITE-FIELDS
    DELIGNE, P
    LUSZTIG, G
    [J]. ANNALS OF MATHEMATICS, 1976, 103 (01) : 103 - 161