Gradient estimates and Harnack inequalities for Yamabe-type parabolic equations on Riemannian manifolds

被引:6
作者
Ha Tuan Dung [1 ]
机构
[1] Hanoi Pedag Univ, Dept Math, 2 Nguyen Van Linh Rd, Phuc Yen Dist, Vinh Phuc Provi, Vietnam
关键词
Gradient estimates; Yamabe-type parabolic equations; Harnack inequalities; Liouville-type theorems; Bochner-Weitzenbock; NONCOMPACT MANIFOLDS; SCALAR CURVATURE;
D O I
10.1016/j.difgeo.2018.05.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M-n, g) be a complete noncompact n-dimensional Riemannian manifolds. In this paper, we consider the following Yamabe-type parabolic equation u(t) = Delta u + au + bu(alpha) on M-n x [0, infinity). We give a global gradient estimate of Hamilton-type for positive smooth solutions of this equation provided that Ricci curvature bounded from below. As its application, we show a dimension-free Harnack inequality and a Liouville-type theorem for nonlinear elliptic equations. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:39 / 48
页数:10
相关论文
共 22 条
[1]  
AUBIN T, 1976, J MATH PURE APPL, V55, P269
[2]   Positive solutions of Yamabe type equations on complete manifolds and applications [J].
Brandolini, L ;
Rigoli, M ;
Setti, AG .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 160 (01) :176-222
[4]  
Hamilton R. S., 1993, COMMUN ANAL GEOM, V1, P113
[5]  
HENON M, 1973, ASTRON ASTROPHYS, V24, P229
[6]  
JIN ZR, 1988, LECT NOTES MATH, V1306, P93
[7]   THE YAMABE PROBLEM [J].
LEE, JM ;
PARKER, TH .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 17 (01) :37-91
[8]  
LI JY, 1991, J FUNCT ANAL, V100, P233
[9]   ON THE PARABOLIC KERNEL OF THE SCHRODINGER OPERATOR [J].
LI, P ;
YAU, ST .
ACTA MATHEMATICA, 1986, 156 (3-4) :153-201
[10]  
Marques F. C., 2015, PROGR NONLINEAR DIFF, V86