Fractional Dual-Phase Lag Equation-Fundamental Solution of the Cauchy Problem

被引:8
|
作者
Ciesielski, Mariusz [1 ]
Siedlecka, Urszula [2 ]
机构
[1] Czestochowa Tech Univ, Dept Comp Sci, PL-42201 Czestochowa, Poland
[2] Czestochowa Tech Univ, Dept Math, PL-42201 Czestochowa, Poland
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 08期
关键词
heat conduction; dual-phase lag equation; Caputo fractional derivative; Cauchy problem; Fourier-Laplace transform; HEAT-CONDUCTION;
D O I
10.3390/sym13081333
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the paper, a fundamental solution of the fractional dual-phase-lagging heat conduction problem is obtained. The considerations concern the 1D Cauchy problem in a whole-space domain. A solution of the initial-boundary problem is determined by using the Fourier-Laplace transform technique. The final form of solution is given in a form of a series. One of the properties of the derived fundamental solution of the considered problem with the initial condition expressed be the Dirac delta function is that it is symmetrical. The effect of the time-fractional order of the Caputo derivatives and the phase-lag parameters on the temperature distribution is investigated numerically by using the method which is based on the Fourier-series quadrature-type approximation to the Bromwich contour integral.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] On the Fundamental Solution of the Cauchy Problem for Time Fractional Diffusion Equation on the Sphere
    Rakhimov, Abdumalik
    Ahmedov, Anvarjon
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2012, 6 (01): : 105 - 112
  • [2] A fundamental solution to the Cauchy problem for a fourth-order pseudoparabolic equation
    I. G. Mamedov
    Computational Mathematics and Mathematical Physics, 2009, 49 : 93 - 104
  • [3] A fundamental solution to the Cauchy problem for a fourth-order pseudoparabolic equation
    Mamedov, I. G.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2009, 49 (01) : 93 - 104
  • [4] Stable numerical solution to a Cauchy problem for a time fractional diffusion equation
    Wei, T.
    Zhang, Z. Q.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2014, 40 : 128 - 137
  • [5] DUAL-PHASE LAG EQUATION. STABILITY CONDITIONS OF A NUMERICAL ALGORITHM BASED ON THE EXPLICIT SCHEME OF THE FINITE DIFFERENCE METHOD
    Majchrzak, Ewa
    Mochnacki, Bohdan
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2016, 15 (03) : 89 - 96
  • [6] On the uniqueness of the solution of the Cauchy problem for the equation of fractional diffusion with Bessel operator
    Khushtova, F. G.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2018, 22 (04): : 774 - 784
  • [7] HEAT FLUX FORMULATION FOR 1D DUAL-PHASE LAG EQUATION
    Majchrzak, Ewa
    Kaluza, Grazyna
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2015, 14 (01) : 71 - 78
  • [8] THE CAUCHY PROBLEM FOR THE HEAT EQUATION WITH A FRACTIONAL LOAD
    Agarwal, Praveen
    Hubert, Florence
    Dermenjian, Yves
    Baltaeva, Umida
    Hasanov, Bobur
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024,
  • [9] Cauchy Problem for a Fractional Parabolic Equation with the Advection
    Li Xitao
    Xu Meng
    Zhou Shulin
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2018, 31 (03): : 252 - 273
  • [10] Cauchy Problem for a Loaded Fractional Diffusion Equation
    Pskhu, A. V.
    Kosmakova, M. T.
    Izhanova, K. A.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (09) : 4574 - 4581