Scalable fabrication of micron-scale graphene nanomeshes for high-performance supercapacitor applications

被引:122
作者
Kim, Hyun-Kyung [1 ,2 ]
Bak, Seong-Min [3 ]
Lee, Suk Woo [1 ]
Kim, Myeong-Seong [1 ]
Park, Byeongho [4 ]
Lee, Su Chan [4 ]
Choi, Yeon Jun [1 ]
Jun, Seong Chan [4 ]
Han, Joong Tark [5 ]
Nam, Kyung-Wan [6 ]
Chung, Kyung Yoon [7 ]
Wang, Jian [8 ]
Zhou, Jigang [8 ]
Yang, Xiao-Qing [3 ]
Roh, Kwang Chul [9 ]
Kim, Kwang-Bum [1 ]
机构
[1] Yonsei Univ, Dept Mat Sci & Engn, 134 Shinchon Dong, Seoul 120749, South Korea
[2] Univ Cambridge, Dept Mat Sci & Met, 27 Charles Babbage Rd, Cambridge CB3 0FS, England
[3] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA
[4] Yonsei Univ, Sch Mech Engn, 134 Shinchon Dong, Seoul 120749, South Korea
[5] Korea Electrotechnol Res Inst, Creat & Fundamental Res Div, Nano Carbon Mat Res Grp, Chang Won 642120, South Korea
[6] Dongguk Univ, Dept Energy & Mat Engn, 26 Pil Dong,3 Ga, Seoul 100715, South Korea
[7] Korea Inst Sci & Technol, Ctr Energy Convergence Res, Hwarangno 14 Gil 5, Seoul 136791, South Korea
[8] Canadian Light Source Inc, Saskatoon, SK S7N 0X4, Canada
[9] Korea Inst Ceram Engn & Technol, Div Energy & Environm, Energy Efficient Mat Team, 101 Soho Ro, Jinju 660031, South Korea
基金
加拿大健康研究院; 加拿大自然科学与工程研究理事会; 加拿大创新基金会; 新加坡国家研究基金会;
关键词
RAY-ABSORPTION-SPECTROSCOPY; ELECTRONIC-STRUCTURE RECOVERY; SINGLE-LAYER GRAPHENE; REDUCED GRAPHENE; GRAPHITE OXIDE; QUANTUM DOTS; THERMAL REDUCTION; POROUS GRAPHENE; ENERGY-STORAGE; ION BATTERIES;
D O I
10.1039/c5ee03580e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene nanomeshes (GNMs) with nanoscale periodic or quasi-periodic nanoholes have attracted considerable interest because of unique features such as their open energy band gap, enlarged specific surface area, and high optical transmittance. These features are useful for applications in semiconducting devices, photocatalysis, sensors, and energy-related systems. Here, we report on the facile and scalable preparation of multifunctional micron-scale GNMs with high-density of nanoperforations by catalytic carbon gasification. The catalytic carbon gasification process induces selective decomposition on the graphene adjacent to the metal catalyst, thus forming nanoperforations. The pore size, pore density distribution, and neck size of the GNMs can be controlled by adjusting the size and fraction of the metal oxide on graphene. The fabricated GNM electrodes exhibit superior electrochemical properties for supercapacitor (ultracapacitor) applications, including exceptionally high capacitance (253 F g(-1) at 1 A g(-1)) and high rate capability (212 F g(-1) at 100 A g(-1)) with excellent cycle stability (91% of the initial capacitance after 50000 charge/discharge cycles). Further, the edge-enriched structure of GNMs plays an important role in achieving edge-selected and high-level nitrogen doping.
引用
收藏
页码:1270 / 1281
页数:12
相关论文
共 62 条
  • [1] Graphene Nanomesh by ZnO Nanorod Photocatalysts
    Akhavan, Omid
    [J]. ACS NANO, 2010, 4 (07) : 4174 - 4180
  • [2] Catalytic effect of metal oxides on the oxidation resistance in carbon nanotube-inorganic hybrids
    Aksel, S.
    Eder, D.
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (41) : 9149 - 9154
  • [3] Bai JW, 2010, NAT NANOTECHNOL, V5, P190, DOI [10.1038/nnano.2010.8, 10.1038/NNANO.2010.8]
  • [4] Electrochemistry at the Edge of a Single Graphene Layer in a Nanopore
    Banerjee, Shouvik
    Shim, Jiwook
    Rivera, Jose
    Jin, Xiaozhong
    Estrada, David
    Solovyeva, Vita
    You, Xueqiu
    Pak, James
    Pop, Eric
    Aluru, Narayana
    Bashir, Rashid
    [J]. ACS NANO, 2013, 7 (01) : 834 - 843
  • [5] Evaluation of solution-processed reduced graphene oxide films as transparent conductors
    Becerril, Hdctor A.
    Mao, Jie
    Liu, Zunfeng
    Stoltenberg, Randall M.
    Bao, Zhenan
    Chen, Yongsheng
    [J]. ACS NANO, 2008, 2 (03) : 463 - 470
  • [6] Bhuvaneswari S, 2014, PHYS CHEM CHEM PHYS, V16, P5284, DOI 10.1039/c3cp54778g
  • [7] Dielectrophoretic integration of single- and few-layer graphenes
    Burg, Brian R.
    Schneider, Julian
    Maurer, Simon
    Schirmer, Niklas C.
    Poulikakos, Dimos
    [J]. JOURNAL OF APPLIED PHYSICS, 2010, 107 (03)
  • [8] R&D considerations for the performance and application of electrochemical capacitors
    Burke, Andrew
    [J]. ELECTROCHIMICA ACTA, 2007, 53 (03) : 1083 - 1091
  • [9] Designed nitrogen doping of few-layer graphene functionalized by selective oxygenic groups
    Chen, Ying
    Xie, Bingqiao
    Ren, Yingtao
    Yu, Mengying
    Qu, Yang
    Xie, Ting
    Zhang, Yong
    Wu, Yucheng
    [J]. NANOSCALE RESEARCH LETTERS, 2014, 9
  • [10] Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density
    Cheng, Qian
    Tang, Jie
    Ma, Jun
    Zhang, Han
    Shinya, Norio
    Qin, Lu-Chang
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (39) : 17615 - 17624